
nanobind Documentation

Wenzel Jakob

Apr 24, 2024

CONTENTS

1 Changelog 2

2 Why another binding library? 15

3 Benchmarks 18

4 Porting guide 21

5 Frequently asked questions 26

6 Installing the library 32

7 Setting up a build system 33

8 Creating your first extension 35

9 Exchanging information 42

10 Object ownership 47

11 Functions 53

12 Classes 61

13 Exceptions 77

14 N-dimensional arrays 81

15 Packaging 91

16 Typing 96

17 Utilities 105

18 Object ownership, continued 106

19 Low-level interface 112

20 Customizing type creation 116

21 C++ API Reference (Core) 119

22 C++ API Reference (Extras) 155

23 CMake API Reference 172

Index 178

i

nanobind Documentation

nanobind is a small binding library that exposes C++ types in Python and vice versa. It is reminiscent of
Boost.Python and pybind11 and uses near-identical syntax. In contrast to these existing tools, nanobind is more
efficient: bindings compile in a shorter amount of time, produce smaller binaries, and have better runtime perfor-
mance.

More concretely, benchmarks show up to ~4× faster compile time, ~5× smaller binaries, and ~10× lower runtime
overheads compared to pybind11. nanobind also outperforms Cython in important metrics (3-12× binary size
reduction, 1.6-4× compilation time reduction, similar runtime performance).

Dependencies

nanobinds depends on

• Python 3.8+ or PyPy 7.3.10+ (the 3.8 and 3.9 PyPy flavors are supported, though there are some limitations).

• CMake 3.15+.

• A C++17 compiler: Clang 7+, GCC 8+, and MSVC2019+ are officially supported. Others (MinGW, Intel,
NVIDIA, ..) may work as well but will not receive support.

How to cite this project?

Please use the following BibTeX template to cite nanobind in scientific discourse:

@misc{nanobind,
author = {Wenzel Jakob},
year = {2022},
note = {https://github.com/wjakob/nanobind},
title = {nanobind: tiny and efficient C++/Python bindings}

}

The nanobind logo was designed by AndoTwin Studio. High-resolution version are available here (light) and here
(dark).

CONTENTS 1

https://www.boost.org/doc/libs/1_64_0/libs/python/doc/html
http://github.com/pybind/pybind11
https://andotwinstudio.com
https://rgl.s3.eu-central-1.amazonaws.com/media/uploads/wjakob/2023/03/27/nanobind_logo.jpg
https://rgl.s3.eu-central-1.amazonaws.com/media/uploads/wjakob/2023/03/28/nanobind_logo_dark_1.png

CHAPTER

ONE

CHANGELOG

nanobind uses a semantic versioning policy for its API. It also has a separate ABI version that is not subject to
semantic versioning.

The ABI version is relevant whenever a type binding from one extension module should be visible in another (also
nanobind-based) extension module. In this case, both modules must use the same nanobind ABI version, or they
will be isolated from each other. Releases that don’t explicitly mention an ABI version below inherit that of the
preceding release.

1.1 Version 2.0.0 (TBA)

The 2.0.0 release of nanobind is entirely dedicated to types1! The project has always advertised seamless Python
↔ C++ interoperability, and this release tries to bring a similar level of interoperability to static type checkers
like MyPy, PyRight, PyType, and editors with interactive autocompletion like Visual Studio Code, PyCharm, and
many other LSP-compatible IDEs.

This required work on three fronts:

1. Stub generation: the above tools all analyze Python code statically without running it. Because the import
mechanism of compiled extensions depends the Python interpreter, these tools weren’t able to inspect the
contents of nanobind-based extensions.

The usual solution involves writing stubs that expose the module contents to static analysis tools. However,
writing stubs by hand is tedious and error-prone.

This release adds tooling to automatically extract stubs from existing extensions. The process is fully inte-
grated into the CMake-based build system and explained in a new documentation section.

2. Better default annotations: once stubs were available, this revealed the next problem: the default nanobind-
provided function and class signatures were too rudimentary, and this led to a user poor experience.

The release therefore improves many builtin type caster so that they produce more accurate type signa-
tures. For example, the STL std::vector<T> caster now renders as collections.abc.Sequence[T]
in stubs when it is used as an input, and list[T] when it is used as part of a return value. The
nb::make_*_iterator() family of functions return typed iterators, etc.

3. Advanced customization: a subset of the type signatures in larger binding projects will generally require
further customization. The features listed below aim to enable precisely this:

• In Python, many built-in types are generic and can be parameterized (e.g., list[int]). The
nb::typed<T, Ts...> wrapper enables such parameterization within C++ (for example, the int-
specialized list would be written as nb::typed<nb::list, int>). Read more.

• The opposite is also possible: passing nb::is_generic() to the class binding constructor
1 The author of this library had somewhat of a revelation after switching to a new editor and experiencing the benefits of interactive Python

code completion and type checking for the first time. This experience also showed how nanobind-based extension were previously a second-class
citizen in this typed world, prompting the changes in this release.

2

http://semver.org
https://github.com/python/mypy
https://github.com/microsoft/pyright
https://github.com/google/pytype
https://code.visualstudio.com
https://www.jetbrains.com/pycharm/
https://en.wikipedia.org/wiki/Language_Server_Protocol
https://typing.readthedocs.io/en/latest/source/stubs.html
https://neovim.io

nanobind Documentation

nb::class_<MyType>(m, "MyType", nb::is_generic())

produces a generic type that can be parameterized in Python (e.g. MyType[int]). Read more.

• The nb::sig annotation overrides the signature of a function or method, e.g.:

m.def("f", &f, nb::sig("def f(x: Foo = Foo(0)) -> None"), "docstring");

Each binding of an overloaded function can be customized separately. This feature can be used to add
decorators or control how default arguments are rendered. Read more.

• The nb::sig annotation can also override class signatures in generated stubs. Stubs often take certain
liberties in deviating somewhat from the precise type signature of the underlying implementation. For
example, the following annotation adds an abstract base class advertising that the class implements a
typed iterator.

using IntVec = std::vector<int>;

nb::class_<IntVec>(m, "IntVec",
nb::sig("class IntVec(collections.abc.Iterable[int])"));

Nanobind can’t subclass Python types, hence this declaration is technically untrue. On the flipside,
such a declaration can assist static checkers and improve auto-completion in visual IDEs. This is fine
since these tools only perform a static analysis and never import the actual extension. Read more.

• The nb::for_setter and nb::for_getter annotations enable passing function binding annotations
(e.g., signature overrides) specifically to the setter or the getter part of a property.

• The nb::arg("name") argument annotation (and "name"_a shorthand) now have a .
sig("signature") member to control how a default value is rendered in the stubs and docstrings.
This provides more targeted control compared to overriding the entire function signature.

• Finally, nanobind’s stub generator supports pattern files containing custom stub replacement rules. This
catch-all solution addresses the needs of advanced binding projects, for which the above list of features
may still not be sufficient.

Most importantly, it was possible to support these improvements with minimal changes to the core parts of
nanobind.

These release breaks API and ABI compatibility, requiring a new major version according to SemVer. The follow-
ing changes are noteworthy:

• The nb::enum_<T>() binding declaration is now a wrapper that creates either a enum.Enum or enum.
IntEnum-derived type. Previously, nanobind relied on a custom enumeration base class that was a frequent
source of friction for users.

This change may break code that casts entries to integers, which now only works for arithmetic (enum.
IntEnum-derived) enumerations. Replace int(my_enum_entry) with my_enum_entry.value to work
around the issue.

• The nb::bind_vector<T>() and nb::bind_map<T>() interfaces were found to be severely flawed since
element access (__getitem__) created views into the internal state of the STL type that was not stable across
subsequent modifications.

This could lead to unexpected changes to array elements and undefined behavior when the underlying storage
was reallocated (i.e., use-after-free).

nanobind 2.0.0 improves these types so that they are safe to use, but this means that element access must now
copy by default, potentially making them less convenient. The documentation of nb::bind_vector<T>()
discusses the issue at length and presents alternative solutions.

• The nb::raw_doc annotation was found to be too inflexible and was removed in this version.

1.1. Version 2.0.0 (TBA) 3

http://semver.org

nanobind Documentation

• The nb::typed wrapper listed above actually already existed in previous nanobind versions but was awk-
ward to use, as it required the user to provide a custom type formatter. This release makes the interface more
convenient.

• The nb::any placeholder to specify an unconstrained nb::ndarray axis was removed. This name was
given to a new wrapper type nb::any indicating typing.Any-typed values.

All use of nb::any in existing code must be replaced with -1 (for example, nb::shape<3, nb::any, 4>
→ nb::shape<3, -1, 4>).

• Keyword-only arguments are now supported, and can be indicated using the new nb::kw_only() function
annotation. (PR #448).

• nanobind classes now permit overriding __new__, in order to support C++ singletons, caches, and other
types that expose factory functions rather than ordinary constructors. Read the section on customizing Python
object creation for more details. (PR #473).

• When binding methods on a class T, nanobind will now produce a Python function that expects a self argu-
ment of type T. Previously, it would use the type of the member pointer to determine the Python function
signature, which could be a base of T, which would create problems if nanobind did not know about that
base. (PR #471).

• nanobind can now handle keyword arguments that are not interned, which avoids spurious TypeError excep-
tions in constructs like fn(**pickle.loads(...)). The speed of normal function calls (which generally
do have interned keyword arguments) should be unaffected. (PR #469).

• The owner=nb::handle() default value of the nb::ndarray constructor was removed since it was bug-
prone. You now have to specify the owner explicitly. The previous default (nb::handle()) continues to be
a valid argument.

• ABI version 14.

Footnote

1.2 Version 1.9.2 (Feb 23, 2024)

• Nanobind instances can now be made weak-referenceable by specifying the nb::is_weak_referenceable
tag in the nb::class_<..> constructor. (PR #335, commits fc7709, 3562f6).

• Added a nb::bool_ wrapper type. (PR #382, commit 90dfba).

• Ensure that the GIL is held when releasing nb::ndarray. (issue #377, commit a968e8).

• nb::try_cast() no longer crashes the interpreter when attempting to cast a Python None to a C++ type
that was bound using nb::class_<...>. Previously this would raise an exception from the cast operator,
which would result in a call to std::terminate() because try_cast() is declared noexcept. (PR #386).

• Fixed memory corruption in a PyPy-specific code path in nb::module_::def_submodule() (commit
21eaff).

• Don’t implicitly convert complex to non-complex nd-arrays. (issue #364, commit ea2569).

• Support for non-assignable types in the std::optional<T> type caster (PR #358, commit 9c9b64).

• nanobind no longer assumes that docstrings provided to function binding (of type const char *) have an
infinite lifetime and it makes copy. (issue #393, commit b3b6f4).

• Don’t pass compiler flags if they may be unsupported by the used compiler. This gets NVCC to work out
of the box (that said, this change does not elevate NVCC to being an officially supported compiler). (issue
#383, commit a307ea).

• Added a CMake install target to the nanobind build system. (PR #356, commit 6bde65, commit 978dbb,
commit f5d8de).

• ABI version 13.

1.2. Version 1.9.2 (Feb 23, 2024) 4

https://github.com/wjakob/nanobind/pull/448
https://github.com/wjakob/nanobind/pull/473
https://github.com/wjakob/nanobind/pull/471
https://github.com/wjakob/nanobind/pull/469
https://github.com/wjakob/nanobind/pull/335
https://github.com/wjakob/nanobind/commit/fc770930468313e5a69364cfd1bbdab9bc0ab208
https://github.com/wjakob/nanobind/commit/3562f692409f29bd9cef0d9eec2ee7e26e53a055
https://github.com/wjakob/nanobind/pull/382
https://github.com/wjakob/nanobind/commit/90dfbaf4c8c410d819cb9be44a3455898c8c2638
https://github.com/wjakob/nanobind/issues/377
https://github.com/wjakob/nanobind/commit/a958e8d966f5af64c84412ca801a405042bbcc0b
https://github.com/wjakob/nanobind/pull/386
https://github.com/wjakob/nanobind/commit/21eaffc263c13a5373546d8957e4152e65b1e8ac
https://github.com/wjakob/nanobind/issues/364
https://github.com/wjakob/nanobind/commit/ea2569f705b9d12185eea67db399a373d37c75aa
https://github.com/wjakob/nanobind/pull/358
https://github.com/wjakob/nanobind/commit/0c9b6489cd3fe8a0a5a858e364983e99b06101ce
https://github.com/wjakob/nanobind/pull/393
https://github.com/wjakob/nanobind/commit/b3b6f44e55948986e02cdbf67e04d9cdd11c4aa4
https://github.com/wjakob/nanobind/pull/383
https://github.com/wjakob/nanobind/commit/a307eacaa9902daa190adc428168cf64007dff9e
https://github.com/wjakob/nanobind/pull/356
https://github.com/wjakob/nanobind/commit/5bde6527dc43535982a36ffa02d41275c5e484d9
https://github.com/wjakob/nanobind/commit/978dbb1d6aaeee7530d57cf3e8d558e099a4eec6
https://github.com/wjakob/nanobind/commit/f5d8defc68a5c6a79b0e64de016ee52dde6ea54d

nanobind Documentation

• Minor fixes and improvements.

1.3 Version 1.9.0-1.9.1 (Feb 18, 2024)

Releases withdrawn because of a regression. The associated changes are listed above in the 1.9.2 release notes.

1.4 Version 1.8.0 (Nov 2, 2023)

• nanobind now considers two C++ std::type_info instances to be equal when their mangled names match.
The previously used pointer comparison was fast but fragile and often caused multi-part extensions to not
recognize each other’s types. This version introduces a two-level caching scheme (search by pointer, then
by name) to fix such problems once and for all, while avoiding the cost of constantly comparing very long
mangled names. (commit b515b1).

• Fixed casting of complex-valued constant nb::ndarray<T> instances. (PR #338, commit ba8c7f).

• Added a type caster for std::nullopt_t (PR #350).

• Added the missing C++ → Python portion of the type caster for Eigen::Ref<..> (PR #334).

• Minor fixes and improvements.

• ABI version 12.

1.5 Version 1.7.0 (Oct 19, 2023)

1.5.1 New features

• The nd-array class nb::ndarray<T> now supports complex-valued T (e.g., std::complex<double>). For
this, the header file nanobind/stl/complex.h must be included. (PR #319, commit 6cbd13).

• Added the function nb::del(), which takes an arbitrary accessor object as input and tries to delete the
associated entry. The C++ statement

nb::del(o[key]);

is equivalent to del o[key] in Python. (commit 4dd745).

• Exposed several convenience functions for raising exceptions as public API: nb::raise,
nb::raise_type_error, and nb::raise_python_error. (commit 0b7f3b).

• Added nb::globals(). (PR #311, commit f0a9eb).

• The char* type caster now accepts nullptr and converts it into a Python None object. (PR #318, commit
30a6ba).

• Added the function nb::is_alive(), which returns false when nanobind was destructed by Python (e.g.,
during interpreter shutdown) making further use of the API illegal. (commit b431d0).

• Minor fixes and improvements.

• ABI version 11.

1.3. Version 1.9.0-1.9.1 (Feb 18, 2024) 5

https://github.com/wjakob/nanobind/commit/b515b1f7f2f4ecc0357818e6201c94a9f4cbfdc2
https://github.com/wjakob/nanobind/pull/338
https://github.com/wjakob/nanobind/commit/ba8c7fa55f2d0ad748cad1dd4af2b22979ebc46a
https://github.com/wjakob/nanobind/pull/350
https://github.com/wjakob/nanobind/pull/334
https://github.com/wjakob/nanobind/pull/319
https://github.com/wjakob/nanobind/commit/6cbd1387753ea8f519ac0fe2242f0a54dd670ede
https://github.com/wjakob/nanobind/commit/4dd74596ac7b0f850cb0144f42a438124b91720c
https://github.com/wjakob/nanobind/commit/0b7f3b1d2a182bda8b95826a3f98cc3e2d0402db
https://github.com/wjakob/nanobind/pull/311
https://github.com/wjakob/nanobind/commit/f0a9ebd9cd384ac554312247526b120102563e53
https://github.com/wjakob/nanobind/pull/317
https://github.com/wjakob/nanobind/commit/30a6bac97a89bfafad82c2c5b6ef4516c00c35d6
https://github.com/wjakob/nanobind/commit/b431d040f7b0585e9901856ee6c9b72281a37fa8

nanobind Documentation

1.5.2 Bugfixes

• The behavior of the nb::keep_alive<Nurse, Patient> function binding annotation was changed as
follows: when the function call requires the implicit conversion of an argument, the lifetime constraint now
applies to the newly produced argument instead of the original object. The change was rolled into a minor
release since the former behavior is arguably undesirable and dangerous. (commit 9d4b2e).

• STL type casters previously raised an exception when casting a Python container containing a None el-
ement into a C++ container that was not able to represent nullptr (e.g., std::vector<T> instead of
std::vector<T*>). However, this exception was raised in a context where exceptions were not allowed,
causing the process to be abort()-ed, which is very bad. This issue is now fixed, and such conversions are
refused. (PR #318, commits d1ad3b and 5f25ae).

• The STL sequence casters (std::vector<T>, etc.) now refuse to unpack str and bytes objects analogous
to pybind11. (commit 7e4a88).

1.6 Version 1.6.2 (Oct 3, 2023)

• Added a missing include file used by the new intrusive reference counting sample implementation from
v1.6.0. (commit 31d115).

1.7 Version 1.6.1 (Oct 2, 2023)

• Added missing namespace declaration to the ref intrusive reference counting RAII helper class added in
version 1.6.0. (commit 3ba352).

1.8 Version 1.6.0 (Oct 2, 2023)

1.8.1 New features

• Several nb::ndarray<..> improvements:

1. CPU loops involving nanobind ndarrays weren’t getting properly vectorized. This release of nanobind
adds views, which provide an efficient abstraction that enables better code generation. See the docu-
mentation section on array views for details. (commit 8f602e).

2. Added support for nonstandard arithmetic types (e.g., __int128 or __fp16) in ndarrays. See the
documentation section for details. (commit 49eab2).

3. Shape constraints like nb::shape<nb::any, nb::any, nb::any> are tedious to write. Now, there
is a shorter form: nb::ndim<3>. (commit 1350a5).

4. Added an explicit constructor that can be used to add or remove ndarray constraints. (commit a1ac207).

• Added the wrapper class nb::weakref . (commit 78887f).

• Added the methods nb::dict::contains() and nb::mapping::contains() to the Python type wrap-
pers. (commit 64d87a).

• Added nb::exec() and nb:eval(). (PR #299).

• Added a type caster for std::complex<T>. (PR #292, commit dcbed4).

• Added an officially supported sample implementation of intrusive reference counting via the
intrusive_counter intrusive_base, and ref classes. (commit 3fa1af).

1.6. Version 1.6.2 (Oct 3, 2023) 6

https://github.com/wjakob/nanobind/commit/9d4b2e317dbf32efab4ed41b6c275f9dbbbcf29f
https://github.com/wjakob/nanobind/pull/318
https://github.com/wjakob/nanobind/commit/d1ad3b91346a1566f42fdf194a3ed9c3eeec5858
https://github.com/wjakob/nanobind/commit/5f25ae0eb9691fbe03a20bcb9f604277ccc1884b
https://github.com/wjakob/nanobind/commit/7e4a88b7ccc047ce34ae8ae99492d46b1acf341a
https://github.com/wjakob/nanobind/commit/31d115fce310475fed0f539b9446cc41ba9ff4d4
https://github.com/wjakob/nanobind/commit/3ba3522e99c8f1f4bcc7c172abd2006eeaa8eaf8
https://github.com/wjakob/nanobind/commit/8f602e187b0634e1df13ba370352cf092e9042c0
https://github.com/wjakob/nanobind/commit/49eab2845530f84a1f029c5c1c5541ab3c1f9adc
https://github.com/wjakob/nanobind/commit/1350a5e15b28e80ffc2130a779f3b8c559ddb620
https://github.com/wjakob/nanobind/commit/a1ac207ab82206b8e50fe456f577c02270014fb3
https://github.com/wjakob/nanobind/commit/78887fc167196a7568a5cef8f8dfbbee09aa7dc4
https://github.com/wjakob/nanobind/commit/64d87ae01355c247123613f140cef8e71bc98fc7
https://github.com/wjakob/nanobind/pull/299
https://github.com/wjakob/nanobind/pull/292
https://github.com/wjakob/nanobind/commit/dcbed4fe1500383ad1f4dff47cacbf0f2e6b1d3f
https://github.com/wjakob/nanobind/commit/3fa1af5e9e6fd0b08d13e16bb425a18963854829

nanobind Documentation

1.8.2 Bugfixes

• Fixed a serious issue involving combinations of bound types (e.g., T) and type casters (e.g.,
std::vector<T>), where nanobind was too aggressive in its use of move semantics. Calling a bound func-
tion from Python taking such a list (e.g., f([t1, t2, ..])) would destruct t1, t2, .. if the type T
exposed a move constructor, which is highly non-intuitive and no longer happens as of this fix.

Further investigation also revealed inefficiencies in the previous implementation where moves were actually
possible but not done (e.g., for functions taking an STL vector by value). Some binding projects may see
speedups as a consequence of this change. (issue #307, commit 122015).

1.9 Version 1.5.2 (Aug 24, 2023)

• Fixed a severe issue with inheritance of the Py_TPFLAGS_HAVE_GC flag affecting classes that derive from
other classes with a nb::dynamic_attr annotation. (issue #279, commit dbedad).

• Implicit conversion of nd-arrays to conform to contiguity constraints such as c_contig and f_contig pre-
viously failed in some cases that are now addressed. (issue #278 commit ed929b).

1.10 Version 1.5.1 (Aug 23, 2023)

• Fixed serious reference counting issue introduced in nanobind version 1.5.0, which affected the functions
python_error::traceback() and python_error::what(), causing undefined behavior via use-after-
free. Also addressed an unrelated minor UB sanitizer warning. (issue #277, commits 30d30c and c48b18).

• Extended the internal data structure tag so that it isolates different MSVC versions from each other (they are
often not ABI compatible, see pybind11 issue #4779). This means that nanobind 1.5.1 effectively bumps the
ABI version to “10.5” when compiling for MSVC, and the internals will be isolated from extensions built
with nanobind v1.5.0 or older. (commit c7f3cd).

• Incorporated fixes so that nanobind works with PyPy 3.10. (commits fb5508 and 2ed10a).

• Fixed type caster for std::vector<bool>. (PR #256).

• Fixed compilation in debug mode on MSVC. (PR #253).

1.11 Version 1.5.0 (Aug 7, 2023)

• Support for creating chained exceptions via the nb::raise_from() and nb::chain_error() functions.
(commits 041520 and beb699).

• Many improvements to the handling of return value policies in nb::ndarray<..> to avoid unnecessary
copies. (commit ffd22b, a79575, and 6f0c3f).

• The nb::ndarray<..> class now has an additional convenience constructor that takes the shape and (op-
tionally) strides using std::initializer_list. (commit de1117).

• Added a non-throwing function nb::try_cast() as an alternative to nb::cast(). (commit 6ca852).

• The nb::list and nb::tuple default constructors now construct an empty list/tuple instead of an invalid
null-initialized handle. (commit 506185)

• New low-level interface for wrapping existing C++ instances via nb::inst_take_ownership()
nb::inst_reference(). Also added convenience functions to replace the contents of an instance with
that of another. nb::inst_replace_copy() along with nb::inst_replace_move() (commit 1c462d).

• Added a low-level abstraction around nb::type_get_slot() around PyType_GetSlot, but with more
consistent behavior across Python versions. (commit d555e9).

• The nb::list::append() method now performs perfect forwarding. (commit 2219d0).

1.9. Version 1.5.2 (Aug 24, 2023) 7

https://github.com/wjakob/nanobind/issues/307
https://github.com/wjakob/nanobind/commit/1220156961ce2d0c96a525f3c27b88e824b997ce
https://github.com/wjakob/nanobind/issues/279
https://github.com/wjakob/nanobind/commit/dbedadc294a7529bf401f01dbc97d4b47b677bc9
https://github.com/wjakob/nanobind/issues/278
https://github.com/wjakob/nanobind/commit/ed929b7c6789e7d5e1760d515bc23ce6f7cedf8c
https://github.com/wjakob/nanobind/issues/277
https://github.com/wjakob/nanobind/commit/30d30caaa3e834122944b28833b9c0315ef19a5d
https://github.com/wjakob/nanobind/commit/c48b180834b4929f2f77ce658f2a50ee78482fb7
https://github.com/pybind/pybind11/pull/4779
https://github.com/wjakob/nanobind/commit/c7f3cd6a7023dec55c63b995ba50c9f5d4b9147a
https://github.com/wjakob/nanobind/commit/fb5508955e1b1455adfe1372b49748ba706b4d87
https://github.com/wjakob/nanobind/commit/2ed108a73bd5fbe0e1c43a8db07e40a165fc265f
https://github.com/wjakob/nanobind/pull/256
https://github.com/wjakob/nanobind/pull/253
https://github.com/wjakob/nanobind/commit/0415208e83885dba038516d86c2f4cca5f81df5f
https://github.com/wjakob/nanobind/commit/beb6999b7ce92ba5e3aaea60cd7f2acc9ba3cdc3
https://github.com/wjakob/nanobind/commit/ffd22b069ba95a546baeca0bdb6711fb9059cad8
https://github.com/wjakob/nanobind/commit/a79575165134c72c0a26e46772290d0404eae7a3
https://github.com/wjakob/nanobind/commit/6f0c3feaf088e78c75f2abee90164f20446eba08
https://github.com/wjakob/nanobind/commit/de111766b21fe893a41cd4614a346b0da251f7f2
https://github.com/wjakob/nanobind/commit/6ca852cc881ee7cd35b674135030709a6b57b8f6
https://github.com/wjakob/nanobind/commit/506185dca821c9cc1268c33b4cc867ae20f0fc4b
https://github.com/wjakob/nanobind/commit/1c462d6e3a112e49686acf33c9cb6e34f996dd6b
https://github.com/wjakob/nanobind/commit/d555e9de1c45394f5be5d62dc999c603d651c8c4
https://github.com/wjakob/nanobind/commit/2219d0b0fec5e6cc4fce96bc3dbad6bfa148a57d

nanobind Documentation

• Inference of automatic* return value policy was entirely moved to the base C++ class type caster. (commit
1ff9df).

• Switch to the new Python 3.12 error status API if available. (commit 36751c).

• Various minor fixes and improvements.

• ABI version 10.

1.12 Version 1.4.0 (June 8, 2023)

• Improved the efficiency of the function dispatch loop. (PR #227).

• Significant improvements to the Eigen type casters (generalized stride handling to avoid unnecessary copies,
support for conversion via nb::cast(), many refinements to the Eigen::Ref<T> interface). (PR #215).

• Added a NB_DOMAIN parameter to nanobind_add_module() which can isolate extensions from each other
to avoid binding clashes. See the associated FAQ entry for details. (commit 977119).

• Reduced the severity of nanobind encountering a duplicate type binding (commits f3b0e6, and 2c9124).

• Support for pickling/unpickling nanobind objects. (commit 59843e).

• ABI version 9.

1.13 Version 1.3.2 (June 2, 2023)

• Fixed compilation on 32 bit processors (only i686 tested so far). (PR #224).

• Fixed compilation on PyPy 3.8. (commit cd8135).

• Reduced binary bloat of musllinux wheels. (commit f52513).

1.14 Version 1.3.1 (May 31, 2023)

• CMake build system improvements for stable ABI wheel generation. (PR #222).

1.15 Version 1.3.0 (May 31, 2023)

This is a big release. The sections below cover added features, efficiency improvements, and miscellaneous fixes
and improvements.

1.15.1 New features

• nanobind now supports binding types that inherit from std::enable_shared_from_this<T>. See the
advanced section on object ownership for more details. (PR #212).

• Added a type caster between Python datetime/timedelta objects and C++
std::chrono::duration/std::chrono::time_point, ported from pybind11. (PR #175).

• The nb::ndarray<..> class can now use the buffer protocol to receive and return arrays representing read-
only memory. (PR #217).

• Added nb::python_error::discard_as_unraisable() as a wrapper around
PyErr_WriteUnraisable(). (PR #175).

1.12. Version 1.4.0 (June 8, 2023) 8

https://github.com/wjakob/nanobind/commit/1ff9df03fb56a16f56854b4cecd1f388f73d3b53
https://github.com/wjakob/nanobind/commit/36751cb05994a96a3801bf511c846a7bc68e2f09
https://github.com/wjakob/nanobind/pull/227
https://github.com/wjakob/nanobind/pull/215
https://github.com/wjakob/nanobind/commit/977119c4797db7decf8064cf118afde768ff8fab
https://github.com/wjakob/nanobind/commit/f3b0e6cbd69a4adcdc31dbe0b844370b1b60dbcf
https://github.com/wjakob/nanobind/commit/2c9124bbbe736881fa8f9f33ea7817c98b43bf8b
https://github.com/wjakob/nanobind/commit/59843e09bc6e8f2b0338829a44cf71e25f76cba3
https://github.com/wjakob/nanobind/pull/224
https://github.com/wjakob/nanobind/commit/cd8135baa1da1213252272b5c9ecbf909e947597
https://github.com/wjakob/nanobind/commit/f525139a80d173feaea5518e842aceeb6ceec5cf
https://github.com/wjakob/nanobind/pull/222
https://github.com/wjakob/nanobind/pull/212
https://github.com/wjakob/nanobind/pull/175
https://github.com/wjakob/nanobind/pull/217
https://github.com/wjakob/nanobind/pull/175

nanobind Documentation

1.15.2 Efficiency improvements:

• Reduced the per-instance overhead of nanobind by 1 pointer and simplified the internal hash table types to
crunch libnanobind. (commit de018d).

• Supplemental type data specified via nb::supplement<T>() is now stored directly within the type object
instead of being referenced through an indirection. (commit d82ca9).

• Reduced the number of exception-related exports to further crunch libnanobind. (commit 763962).

• Reduced the size of nanobind type objects by 5 pointers. (PR #194, #195, and commit d82ca9).

• Internal nanobind types (nb_type, nb_static_property, nb_ndarray) are now constructed on demand.
This reduces the size of the libnanobind component in static (NB_STATIC) builds when those features are
not used. (commits 95e45a, 375083, and e033c8).

• Added a small function cache to improve code generation in limited API builds. (commit f0f4aa).

• Refined compiler and linker flags across platforms to ensure compact binaries especially in NB_STATIC
builds. (commit 5ead9f)

• nanobind enums now take advantage of supplemental data to improve the speed of object and name lookups.
Note that this prevents use of nb::supplement<T>() with enums for other purposes. (PR #195).

1.15.3 Miscellaneous fixes and improvements

• Use the new PEP-697 interface to access data in type objects when compiling stable ABI3 wheels. This
improves forward compatibility (the Python team may at some point significantly refactor the layout and
internals of type objects). (PR #211):

• Added introspection attributes __self__ and __func__ to nanobind bound methods, to make them more
like regular Python bound methods. Fixed a bug where some_obj.method.__call__() would behave
differently than some_obj.method(). (PR #216).

• Updated the implementation of nb::enum_ so it does not take advantage of any private nanobind type details.
As a side effect, the construct nb::class_<T>(..., nb::is_enum(...)) is no longer permitted; use
nb::enum_<T>(...) instead. (PR #195).

• Added the nb::type_slots_callback class binding annotation, similar to nb::type_slots but allowing
more dynamic choices. (PR #195).

• nanobind type objects now treat attributes specially whose names begin with @. These attributes can be set
once, but not rebound or deleted. This safeguard allows a borrowed reference to the attribute value to be
safely stashed in the type supplement, allowing arbitrary Python data associated with the type to be accessed
without a dictionary lookup while keeping this data visible to the garbage collector. (PR #195).

• Fixed surprising behavior in enumeration comparisons and arithmetic (PR #207):

– Enum equality comparisons (== and !=) now can only be true if both operands have the same enum
type, or if one is an enum and the other is an int. This resolves some confusing results and ensures
that enumerators of different types have a distinct identity, which is important if they’re being put into
the same set or used as keys in the same dictionary. All of the following were previously true but will
now evaluate as false:

∗ FooEnum(1) == BarEnum(1)

∗ FooEnum(1) == 1.2

∗ FooEnum(1) == "1"

– Enum ordering comparisons (<, <=, >=, >) and arithmetic operations (when using the is_arithmetic
annotation) now require that any non-enum operand be a Python number (an object that defines
__int__, __float__, and/or __index__) and will avoid truncating non-integer operands to inte-
gers. Note that unlike with equality comparisons, ordering and arithmetic operations do still permit
two operands that are enums of different types. Some examples of changed behavior:

1.15. Version 1.3.0 (May 31, 2023) 9

https://github.com/wjakob/nanobind/commit/de018db2d17905564703f1ade4aa201a22f8551f
https://github.com/wjakob/nanobind/commit/d82ca9c14191e74dd35dd5bf15fc90f5230319fb
https://github.com/wjakob/nanobind/commit/763962b8ce76414148089ef6a68cff97d7cc66ce
https://github.com/wjakob/nanobind/pull/194
https://github.com/wjakob/nanobind/pull/195
https://github.com/wjakob/nanobind/commit/d82ca9c14191e74dd35dd5bf15fc90f5230319fb
https://github.com/wjakob/nanobind/commit/95e45a4027dcbce935091533f7d41bf59e3e5fe1
https://github.com/wjakob/nanobind/commit/37508386a1f8c346d17a0353c8152940aacde9c2
https://github.com/wjakob/nanobind/commit/e033c8fab4a14cbb9c5b0e08b1bdf49af2a9cb22
https://github.com/wjakob/nanobind/commit/f0f42a564995ba3bd573282674d1a6d636a048c8
https://github.com/wjakob/nanobind/commit/5ead9ff348a2ef0df8231e6480607a5b0623a16b
https://github.com/wjakob/nanobind/pull/195
https://peps.python.org/pep-0697/
https://github.com/wjakob/nanobind/pull/211
https://github.com/wjakob/nanobind/pull/216
https://github.com/wjakob/nanobind/pull/195
https://github.com/wjakob/nanobind/pull/195
https://github.com/wjakob/nanobind/pull/195
https://github.com/wjakob/nanobind/pull/207

nanobind Documentation

∗ FooEnum(1) < 1.2 is now true (used to be false)

∗ FooEnum(2) * 1.5 is now 3.0 (used to be 2)

∗ FooEnum(3) - "2" now raises an exception (used to be 1)

– Enum comparisons and arithmetic operations with unsupported types now return NotImplemented
rather than raising an exception. This means equality comparisons such as some_enum == None will
return unequal rather than failing; order comparisons such as some_enum < None will still fail, but
now with a more informative error.

• ABI version 8.

1.16 Version 1.2.0 (April 24, 2023)

• Improvements to the internal C++→ Python instance map data structure to improve performance and address
type confusion when returning previously registered instances. (commit 716354, discussion 189).

• Added up-to-date nanobind benchmarks on Linux including comparisons to Cython. (commit 834cf3 and
39e163).

• Removed the superfluous nb_enum metaclass. (commit 9c1985).

• Fixed a corner case that prevented nb::cast<char> from working. (commit 9ae320).

1.17 Version 1.1.1 (April 6, 2023)

• Added documentation on packaging and distributing nanobind modules. (commit 0715b2).

• Made the conversion handle::operator bool() explicit. (PR #173).

• Support nb::typed<..> in return values. (PR #174).

• Tweaks to definitions in nb_types.h to improve compatibility with further C++ compilers (that said, there
is no change about the official set of supported compilers). (commit b8bd10)

1.18 Version 1.1.0 (April 5, 2023)

• Added size, shape_ptr, stride_ptr members to to the nb::ndarray<..> class. (PR #161).

• Allow macros in NB_MODULE(..) name parameter. (PR #168).

• The nb::ndarray<..> interface is more tolerant when converting Python (PyTorch/NumPy/..) arrays with
a size-0 dimension that have mismatched strides. (PR #162).

• Removed the <anonymous> label from docstrings of anonymous functions, which caused issues in MyPy.
(PR #172).

• Fixed an issue in the propagation of return value policies that broke user-provided/custom policies in prop-
erties (PR #170).

• The Eigen interface now converts 1x1 matrices to 1x1 NumPy arrays instead of scalars. (commit 445781).

• The nanobind package now has a simple command line interface. (commit d5ccc8).

1.16. Version 1.2.0 (April 24, 2023) 10

https://docs.python.org/3/library/constants.html#NotImplemented
https://github.com/wjakob/nanobind/commit/716354f0ed6123d6a19fcabb077b72a17b4ddf79
https://github.com/wjakob/nanobind/discussions/189
https://github.com/wjakob/nanobind/commit/834cf36ce12ffe6470dcffecd21341377c56cee1
https://github.com/wjakob/nanobind/commit/e9e163ec55de995a68a34fafda2e96ff06532658
https://github.com/wjakob/nanobind/commit/9c19850471be70a22114826f6c0edceee99ff40b
https://github.com/wjakob/nanobind/commit/9ae32054d9a6ad17af15994dc51138eb88f71f92
https://github.com/wjakob/nanobind/commit/0715b278ba806cf13cf63e41d62438481e7b73b8
https://github.com/wjakob/nanobind/pull/173
https://github.com/wjakob/nanobind/pull/174
https://github.com/wjakob/nanobind/commit/b8bd1086e9b20da8a81a954f03e7947bee5422fd
https://github.com/wjakob/nanobind/pull/161
https://github.com/wjakob/nanobind/pull/168
https://github.com/wjakob/nanobind/pull/162
https://github.com/wjakob/nanobind/pull/172
https://github.com/wjakob/nanobind/pull/170
https://github.com/wjakob/nanobind/commit/445781fc2cf2fa326cc22e8fd483e8e4a7bf6cf5
https://github.com/wjakob/nanobind/commit/d5ccc8844b29ca6cd5188ffd8d16e034bcee9f73

nanobind Documentation

1.19 Version 1.0.0 (March 28, 2023)

• Nanobind now has a logo. (commit b65d31).

• Fixed a subtle issue involving function/method properties and the IPython command line interface. (PR
#151).

• Added a boolean type to the nb::ndarray<..> interface. (PR #150).

• Minor fixes and improvements.

1.20 Version 0.3.1 (March 8, 2023)

• Added a type caster for std::filesystem::path. (PR #138 and commit 0b05cd).

• Fixed technical issues involving implicit conversions (commits 022935 and 5aefe3) and construction of type
hierarchies with custom garbage collection hooks (commit 022935).

• Re-enabled the ‘chained fixups’ linker optimization for recent macOS deployment targets. (commit 2f29ec).

1.21 Version 0.3.0 (March 8, 2023)

• Botched release, replaced by 0.3.1 on the same day.

1.22 Version 0.2.0 (March 3, 2023)

• Nanobind now features documentation on readthedocs.

• The documentation process revealed a number of inconsistencies in the class_<T>::def* naming scheme.
nanobind will from now on use the following shortened and more logical interface:

Type method
Methods & constructors .def()
Fields .def_ro(), .def_rw()
Properties .def_prop_ro(), .def_prop_rw()
Static methods .def_static()
Static fields .def_ro_static(), .def_rw_static()
Static properties .def_prop_ro_static(), .def_prop_rw_static()

Compatibility wrappers with deprecation warnings were also added to help port existing code. They will be
removed when nanobind reaches version 1.0. (commits cb0dc3 and b5ed96)

• The nb::tensor<..> class has been renamed to nb::ndarray<..>, and it is now located in a different
header file (nanobind/ndarray.h). A compatibility wrappers with a deprecation warning was retained in
the original header file. It will be removed when nanobind reaches version 1.0. (commit a6ab8b).

• Dropped the first two arguments of the NB_OVERRIDE_*() macros that turned out to be unnecessary in
nanobind. (commit 22bc21).

• Added casters for dense matrix/array types from the Eigen library. (PR #120).

• Added casters for sparse matrix/array types from the Eigen library. (PR #126).

• Implemented nb::bind_vector<T>() analogous to similar functionality in pybind11. (commit f2df8a).

• Implemented nb::bind_map<T>() analogous to similar functionality in pybind11. (PR #114).

1.19. Version 1.0.0 (March 28, 2023) 11

https://github.com/wjakob/nanobind/commit/b65d3b134d8b9f8d153b51d87751d09a12e4235b
https://github.com/wjakob/nanobind/pull/151
https://github.com/wjakob/nanobind/pull/150
https://github.com/wjakob/nanobind/pull/138
https://github.com/wjakob/nanobind/commit/0b05cde8bd8685ab42328660da03cc4ee66e3ba2
https://github.com/wjakob/nanobind/commit/022935cbb92dfb1d02f90546bf6b34013f90e9e5
https://github.com/wjakob/nanobind/commit/5aefe36e3e07b5b98a6be7c0f3ce28a236fe2330
https://github.com/wjakob/nanobind/commit/7b3e893e1c14d95f7b3fc838657e6f9ce520d609
https://github.com/wjakob/nanobind/commit/2f29ec7d5fbebd5f55fb52da297c8d197279f659
https://nanobind.readthedocs.io
https://github.com/wjakob/nanobind/commit/cb0dc392b656fd9d0c85c56dc51a9be1de06e176
https://github.com/wjakob/nanobind/commit/b5ed696a7a68c9c9adc4d3aa3c6f4adb5b7defeb
https://github.com/wjakob/nanobind/commit/a6ab8b06dd3316ac53fbed143c346c2b73c31b75
https://github.com/wjakob/nanobind/commit/22bc21b97cd2bbe060d7fb42d374bde72d973ada
https://eigen.tuxfamily.org/index.php?title=Main_Page
https://github.com/wjakob/nanobind/pull/120
https://eigen.tuxfamily.org/index.php?title=Main_Page
https://github.com/wjakob/nanobind/pull/126
https://github.com/wjakob/nanobind/commit/f2df8a90fbfb06ee03a79b0dd85fa0e266efeaa9
https://github.com/wjakob/nanobind/pull/114

nanobind Documentation

• nanobind now automatically downcasts polymorphic objects in return values analogous to pybind11. (com-
mit cab96a).

• nanobind now supports tag-based polymorphism. (commit 6ade94).

• Updated tuple/list iterator to satisfy the std::forward_iterator concept. (PR #117).

• Fixed issues with non-writeable tensors in NumPy. (commit 25cc3c).

• Removed use of some C++20 features from the codebase. This now makes it possible to use nanobind on
Visual Studio 2017 and GCC 7.3.1 (used on RHEL 7). (PR #115).

• Added the nb::typed<...> wrapper to override the type signature of an argument in a bound function in
the generated docstring. (commit b3404c4).

• Added an nb::implicit_convertible<A, B>() function analogous to the one in pybind11. (commit
aba4af).

• Updated nb::make_*_iterator<..>() so that it returns references of elements, not copies. (commit
8916f5).

• Changed the CMake build system so that the library component (libnanobind) is now compiled statically
by default. (commit 8418a4).

• Switched shared library linking on macOS back to a two-level namespace. (commit fe4965).

• Various minor fixes and improvements.

• ABI version 7.

1.23 Version 0.1.0 (January 3, 2023)

• Allow nanobind methods on non-nanobind) classes. (PR #104).

• Fix dangling tp_members pointer in type initialization. (PR #99).

• Added a runtime setting to suppress leak warnings. (PR #109).

• Added the ability to hash nb::enum_<..> instances (PR #106).

• Fixed the signature of nb::enum_<..>::export_values(). (commit 714d17).

• Double-check GIL status when performing reference counting operations in debug mode. (commit a1b245).

• Fixed a reference leak that occurred when module initialization fails. (commit adfa9e).

• Improved robustness of nb::tensor<..> caster. (commit 633672).

• Upgraded the internally used tsl::robin_map<> hash table to address a rare overflow issue discovered in
this codebase. (commit 3b81b1).

• Various minor fixes and improvements.

• ABI version 6.

1.24 Version 0.0.9 (Nov 23, 2022)

• PyPy 7.3.10 or newer is now supported subject to certain limitations. (commits f935f93 and b343bbd).

• Three changes that reduce the binary size and improve runtime performance of binding libraries. (commits
07b4e1fc, 9a803796, and cba4d285).

• Fixed a reference leak in python_error::what() (commit 61393ad).

• Adopted a new policy for function type annotations. (commit c855c90).

1.23. Version 0.1.0 (January 3, 2023) 12

https://github.com/wjakob/nanobind/commit/cab96a9160e0e1a626bc3e4f9fcddcad31e0f727
https://github.com/wjakob/nanobind/commit/6ade94b8e5a2388d66fc9df6f81603c65108cbcc
https://github.com/wjakob/nanobind/pull/117
https://github.com/wjakob/nanobind/commit/25cc3ccbd1174e7cfc4eef1d1e7206cc38e854ca
https://github.com/wjakob/nanobind/pull/115
https://github.com/wjakob/nanobind/commit/b3404c4f347981bce7f4c7a9bac762656bed8385
https://github.com/wjakob/nanobind/commit/aba4af06992f14e21e5b7b379e7986e939316da4
https://github.com/wjakob/nanobind/commit/8916f51ad1a25318b5c9fcb07c153f6b72a43bd2
https://github.com/wjakob/nanobind/commit/8418a4aa93d19d7b9714b8d9473539b46cbed508
https://github.com/wjakob/nanobind/commit/fe4965369435bf7c0925bddf610553d0bb516e27
https://github.com/wjakob/nanobind/pull/104
https://github.com/wjakob/nanobind/pull/99
https://github.com/wjakob/nanobind/pull/109
https://github.com/wjakob/nanobind/pull/106
https://github.com/wjakob/nanobind/commit/714d17e71aa405c7633e0bd798a8bdb7b8916fa1
https://github.com/wjakob/nanobind/commit/a1b245fcf210fbfb10d7eb19dc2dc31255d3f561
https://github.com/wjakob/nanobind/commit/adfa9e547be5575f025d92abeae2e649a690760a
https://github.com/wjakob/nanobind/commit/633672cd154c0ef13f96fee84c2291562f4ce3d3
https://github.com/Tessil/robin-map/issues/52
https://github.com/wjakob/nanobind/commit/3b81b18577e243118a659b524d4de9500a320312
https://github.com/wjakob/nanobind/blob/master/docs/pypy.rst
https://github.com/wjakob/nanobind/commit/f935f93b9d532a5ef1f385445f328d61eb2af97f
https://github.com/wjakob/nanobind/commit/b343bbd11c12b55bbc00492445c743cae18b298f
https://github.com/wjakob/nanobind/commit/07b4e1fc9e94eeaf5e9c2f4a63bdb275a25c82c6
https://github.com/wjakob/nanobind/commit/9a803796cb05824f9df7593edb984130d20d3755
https://github.com/wjakob/nanobind/commit/cba4d285f4e23b888dfcccc656c221414138a2b7
https://github.com/wjakob/nanobind/commit/61393ad3ce3bc68d195a1496422df43d5fb45ec0
https://github.com/wjakob/nanobind/commit/c855c90fc91d180f7c904c612766af6a84c017e3

nanobind Documentation

• Improved the effectiveness of link-time-optimization when building extension modules with the NB_STATIC
flag. This leads to smaller binaries. (commit f64d2b9).

• Nanobind now relies on standard mechanisms to inherit the tp_traverse and tp_clear type slots instead
of trying to reimplement the underlying CPython logic (commit efa09a6b).

• Moved nanobind internal data structures from builtins to Python interpreter state dictionary. (issue #96,
commit ca23da7).

• Various minor fixes and improvements.

1.25 Version 0.0.8 (Oct 27, 2022)

• Caster for std::array<..>. (commit be34b16).

• Caster for std::set<..> and std::unordered_set (PR #87).

• Ported nb::make[_key_,_value]_iterator() from pybind11. (commit 34d0be1).

• Caster for untyped void * pointers. (commit 6455fff).

• Exploit move constructors in nb::class_<T>::def_readwrite() and
nb::class_<T>::def_readwrite_static() (PR #94).

• Redesign of the std::function<> caster to enable cyclic garbage collector traversal through inter-language
callbacks (PR #95).

• New interface for specifying custom type slots during Python type construction. (commit 38ba18a).

• Fixed potential undefined behavior related to nb_func garbage collection by Python’s cyclic garbage collec-
tor. (commit 662e1b9).

• Added a workaround for spurious reference leak warnings caused by other extension modules in conjunction
with typing.py (commit 5e11e80).

• Various minor fixes and improvements.

• ABI version 5.

1.26 Version 0.0.7 (Oct 14, 2022)

• Fixed a regression involving function docstrings in pydoc. (commit 384f4a).

1.27 Version 0.0.6 (Oct 14, 2022)

• Fixed undefined behavior that could lead to crashes when nanobind types were freed. (commit 39266e).

• Refactored nanobind so that it works with Py_LIMITED_API (PR #37).

• Dynamic instance attributes (PR #38).

• Intrusive pointer support (PR #43).

• Byte string support (PR #62).

• Casters for std::variant<..> and std::optional<..> (PR #67).

• Casters for std::map<..> and std::unordered_map<..> (PR #73).

• Caster for std::string_view<..> (PR #68).

• Custom exception support (commit 41b7da).

• Register nanobind functions with Python’s cyclic garbage collector (PR #86).

1.25. Version 0.0.8 (Oct 27, 2022) 13

https://github.com/wjakob/nanobind/commit/f64d2b9bb558afe28cf6909e4fa47ebf720f62b3
https://github.com/wjakob/nanobind/commit/efa09a6bf6ac27f790b2c96389c2da42d4bc176b
https://github.com/wjakob/nanobind/issues/96
https://github.com/wjakob/nanobind/commit/ca23da72ce71a45318f1e59474c9c2906fce5154
https://github.com/wjakob/nanobind/commit/be34b165c6a0bed08e477755644f96759b9ed69a
https://github.com/wjakob/nanobind/pull/87
https://github.com/wjakob/nanobind/commit/34d0be1bbeb54b8265456fd3a4a50e98f93fe6d4
https://github.com/wjakob/nanobind/commit/6455fff7be5be2867063ea8138cf10e1d9f3065f
https://github.com/wjakob/nanobind/pull/94
https://github.com/wjakob/nanobind/pull/95
https://github.com/wjakob/nanobind/commit/38ba18a835cfcd561efb4b4c640ee5c6d525decb
https://github.com/wjakob/nanobind/commit/662e1b9311e693f84c58799a67064d4a44bb706a
https://github.com/wjakob/nanobind/commit/5e11e8032f777c0a34abd437dc6e84a909907c91
https://github.com/wjakob/nanobind/commit/384f4ada1f3f08486fb03427227878ddbbcaad43
https://github.com/wjakob/nanobind/commit/39266ef0b0ccd7fa3e9237243a6c97ba8db2cd2a
https://github.com/wjakob/nanobind/pull/37
https://github.com/wjakob/nanobind/pull/38
https://github.com/wjakob/nanobind/pull/43
https://github.com/wjakob/nanobind/pull/62
https://github.com/wjakob/nanobind/pull/67
https://github.com/wjakob/nanobind/pull/73
https://github.com/wjakob/nanobind/pull/68
https://github.com/wjakob/nanobind/commit/41b7da33f1bc5c583bb98df66bdac2a058ec5c15
https://github.com/wjakob/nanobind/pull/86

nanobind Documentation

• Various minor fixes and improvements.

• ABI version 3.

1.28 Version 0.0.5 (May 13, 2022)

• Enumeration export.

• Implicit number conversion for numpy scalars.

• Various minor fixes and improvements.

1.29 Version 0.0.4 (May 13, 2022)

• Botched release, replaced by 0.0.5 on the same day.

1.30 Version 0.0.3 (Apr 14, 2022)

• DLPack support.

• Iterators for various Python type wrappers.

• Low-level interface to instance creation.

• Docstring generation improvements.

• Various minor fixes and improvements.

1.31 Version 0.0.2 (Mar 10, 2022)

• Initial release of the nanobind codebase.

• ABI version 1.

1.32 Version 0.0.1 (Feb 21, 2022)

• Placeholder package on PyPI.

1.28. Version 0.0.5 (May 13, 2022) 14

CHAPTER

TWO

WHY ANOTHER BINDING LIBRARY?

I started the pybind11 project back in 2015 to generate better C++/Python bindings for a project I had been working
on. Thanks to many amazing contributions by others, pybind11 has since become a core dependency of software
used across the world including flagship projects like PyTorch and Tensorflow. Every day, it is downloaded over
400’000 times. Hundreds of contributed extensions and generalizations address use cases of this diverse audience.
However, all of this success also came with costs: the complexity of the library grew tremendously, which had a
negative impact on efficiency.

Curiously, the situation now is reminiscent of 2015: binding generation with existing tools (Boost.Python, py-
bind11) is slow and produces enormous binaries with overheads on runtime performance. At the same time, key
improvements in C++17 and Python 3.8 provide opportunities for drastic simplifications. Therefore, I am starting
another binding project. This time, the scope is intentionally limited so that this doesn’t turn into an endless cycle.

2.1 So what is different?

nanobind is highly related to pybind11 and inherits most of its conventions and syntax. The main difference is
a change in philosophy: pybind11 must deal with all of C++ to bind legacy codebases, while nanobind targets a
smaller C++ subset. The codebase has to adapt to the binding tool and not the other way around, which allows
nanobind to be simpler and faster. Pull requests with extensions and generalizations to handle subtle fringe cases
were welcomed in pybind11, but they will likely be rejected in this project.

An overview of removed features is provided in a separate section. Besides feature removal, the rewrite was also an
opportunity to address long-standing performance issues and add a number of major quality-of-live improvements
and smaller features.

2.2 Performance improvements

The benchmark section evaluates the impact of the following performance improvements:

• Compact objects: C++ objects are now co-located with the Python object whenever possible (less pointer
chasing compared to pybind11). The per-instance overhead for wrapping a C++ type into a Python object
shrinks by a factor of 2.3x. (pybind11: 56 bytes, nanobind: 24 bytes.)

• Compact functions: C++ function binding information is now co-located with the Python function object
(less pointer chasing).

• Compact types: C++ type binding information is now co-located with the Python type object (less pointer
chasing, fewer hashtable lookups).

• Fast hash table: nanobind upgrades several important internal associative data structures that previously
used std::unordered_map to a more efficient alternative (tsl::robin_map, which is included as a git sub-
module).

• Vector calls: function calls from/to Python are realized using PEP 590 vector calls, which gives a nice speed
boost. The main function dispatch loop no longer allocates heap memory.

15

http://github.com/pybind/pybind11
https://pytorch.org
https://www.tensorflow.org
https://github.com/boostorg/python
http://github.com/pybind/pybind11
http://github.com/pybind/pybind11
https://github.com/Tessil/robin-map
https://www.python.org/dev/peps/pep-0590

nanobind Documentation

• Library component: pybind11 was designed as a header-only library, which is generally a good thing be-
cause it simplifies the compilation workflow. However, one major downside of this is that a large amount
of redundant code has to be compiled in each binding file (e.g., the function dispatch loop and all of
the related internal data structures). nanobind compiles a separate shared or static support library (”lib-
nanobind”) and links it against the binding code to avoid redundant compilation. The CMake interface
nanobind_add_module() fully automates these extra steps.

• Smaller headers: #include <pybind11/pybind11.h> pulls in a large portion of the STL (about 2.1
MiB of headers with Clang and libc++). nanobind minimizes STL usage to avoid this problem. Type casters
even for for basic types like std::string require an explicit opt-in by including an extra header file (e.g.
#include <nanobind/stl/string.h>).

• Simpler compilation: pybind11 was dependent on link time optimization (LTO) to produce reasonably-sized
bindings, which makes linking a build time bottleneck. With nanobind’s split into a precompiled library and
minimal metatemplating, LTO is no longer crucial and can be skipped.

• Lifetime management: nanobind maintains efficient internal data structures for lifetime management
(needed for nb::keep_alive, nb::rv_policy::reference_internal, the std::shared_ptr inter-
face, etc.). With these changes, bound types no longer need to be weak-referenceable, which saves a pointer
per instance.

2.3 Major additions

nanobind includes a number of quality-of-live improvements for developers:

• N-dimensional arrays: nanobind can exchange data with modern array programming frameworks. It uses
either DLPack or the buffer protocol to achieve zero-copy CPU/GPU array exchange with frameworks like
NumPy, PyTorch, TensorFlow, JAX, etc. See the section on n-dimensional arrays for details.

• Stable ABI: nanobind can target Python’s stable ABI interface starting with Python 3.12. This means that
extension modules will be compatible with future version of Python without having to compile separate
binaries per interpreter. That vision is still relatively far out, however: it will require Python 3.12+ to be
widely deployed.

• Stub generation: nanobind ships with a custom stub generator and CMake integration to automatically
create high quality stubs as part of the build process. Stubs make compiled extension code compatible with
visual autocomplete in editors like Visual Studio Code and static type checkers like MyPy, PyRight and
PyType.

• Leak warnings: When the Python interpreter shuts down, nanobind reports instance, type, and function
leaks related to bindings, which is useful for tracking down reference counting issues. If these warnings are
undesired, call nb::set_leak_warnings(false). nanobind also fully deletes its internal data structures
when the Python interpreter terminates, which avoids memory leak reports in tools like valgrind.

• Better docstrings: pybind11 pre-renders docstrings while the binding code runs. In other words, every call
to .def(...) to bind a function immediately creates the underlying docstring. When a function takes a
C++ type as parameter that is not yet registered in pybind11, the docstring will include a C++ type name
(e.g. std::vector<int, std::allocator<int>>), which can look rather ugly. pybind11 binding dec-
larations must be carefully arranged to work around this issue.

nanobind avoids the issue altogether by not pre-rendering docstrings: they are created on the fly when
queried. nanobind also has improved out-of-the-box compatibility with documentation generation tools like
Sphinx.

• Low-level API: nanobind exposes an optional low-level API to provide fine-grained control over diverse
aspects including instance creation, type creation, and it can store supplemental data in types. The low-level
API provides a useful escape hatch to pursue advanced projects that were not foreseen in the design of this
library.

2.3. Major additions 16

https://github.com/dmlc/dlpack
https://docs.python.org/3/c-api/buffer.html
https://numpy.org
https://pytorch.org
https://www.tensorflow.org
https://jax.readthedocs.io
https://docs.python.org/3/c-api/stable.html
https://typing.readthedocs.io/en/latest/source/stubs.html
https://code.visualstudio.com
https://github.com/python/mypy
https://github.com/microsoft/pyright
https://github.com/google/pytype
https://www.sphinx-doc.org/en/master/

nanobind Documentation

2.4 Minor additions

The following lists minor-but-useful additions relative to pybind11.

• Finding Python objects associated with a C++ instance: In addition to all of the return value policies
supported by pybind11, nanobind provides one additional policy named nb::rv_policy::none that only
succeeds when the return value is already a known/registered Python object. In other words, this policy will
never attempt to move, copy, or reference a C++ instance by constructing a new Python object.

The new nb::find() function encapsulates this behavior. It resembles nb::cast() in the sense that it
returns the Python object associated with a C++ instance. But while nb::cast() will create that Python
object if it doesn’t yet exist, nb::find() will return a nullptr object. This function is useful to interface
with Python’s cyclic garbage collector.

• Parameterized wrappers: The nb::handle_t<T> type behaves just like the nb::handle class and wraps
a PyObject * pointer. However, when binding a function that takes such an argument, nanobind will only
call the associated function overload when the underlying Python object wraps a C++ instance of type T.

Similarly, the nb::type_object_t<T> type behaves just like the nb::type_object class and wraps a
PyTypeObject * pointer. However, when binding a function that takes such an argument, nanobind will
only call the associated function overload when the underlying Python type object is a subtype of the C++
type T.

Finally, the nb::typed<T, Ts...> annotation can parameterize any other type. The feature exists to
improve the expressiveness of type signatures (e.g., to turn list into list[int]). Note, however, that
nanobind does not perform additional runtime checks in this case. Please see the section on parameterizing
generics for further details.

• Signature overrides: it may sometimes be necessary to tweak the type signature of a class or function to
provide richer type information to static type checkers like MyPy or PyRight. In such cases, specify the
nb::sig attribute to override the default nanobind-provided signature.

For example, the following function signature annotation creates an overload that should only be called with
an 1-valued integer literal. While the function also includes a runtime check, a static type checker can now
ensure that this error condition cannot possibly be triggered by a given piece of code.

m.def("f",
[](int arg) {

if (arg != 1)
nb::raise("invalid input");

return arg;
},
nb::sig("def f(arg: typing.Literal[1], /) -> int"));

Please see the section on customizing function signatures and class signatures for further details.

2.4. Minor additions 17

https://github.com/python/mypy
https://github.com/microsoft/pyright

CHAPTER

THREE

BENCHMARKS

Note: TL;DR: nanobind bindings compile up to ~4× faster and produce ~5× smaller binaries with ~10× lower
runtime overheads compared to pybind11.

nanobind also outperforms Cython in important metrics (3-12× binary size reduction, 1.6-4× compilation time
reduction, similar runtime performance).

The following experiments analyze the performance of a large function-heavy (func) and class-heavy (class)
binding microbenchmark compiled using Boost.Python, Cython, pybind11. The pybind11 + smart_holder
results below refer to a special branch that addresses long-standing issues related to holder types in pybind11.

Each experiment is shown twice: light gray [debug] columns provide data for a debug build, and [opt] shows a
size-optimized build that is representative of a deployment scenario. The former is included to show that nanobind
performance is also good during a typical development workflow.

A comparison with cppyy, which uses dynamic compilation, is also shown later. Details on the experimental setup
can be found below.

3.1 Compilation time

The first plot contrasts the compilation time, where “number ×” annotations denote the amount of time spent
relative to nanobind. As shown below, nanobind achieves a ~2.7-4.4× improvement compared to pybind11 and a
1.6-4.4x improvement compared to Cython.

18

https://github.com/boostorg/python
https://cython.org
https://github.com/pybind/pybind11
https://github.com/pybind/pybind11/tree/smart_holder
https://cppyy.readthedocs.io/en/latest/

nanobind Documentation

3.2 Binary size

The extremely large size of generated binaries has been a persistent problem of many prior binding libraries.
nanobind significantly improves this metric in size-optimized builds. There is a ~11× improvement compared to
Boost.Python, a 3-5× improvement compared to pybind11, and a 3-12× improvement compared to Cython.

3.3 Performance

The last experiment compares the runtime performance overheads by calling a bound function many times in a loop.
Here, it is also interesting to additionally compare against cppyy (green bar) and a pure Python implementation
that runs bytecode without binding overheads (hatched gray bar). The smart_holder branch of pybind11 is not
explicitly listed since its runtime performance matches the base version.

This data shows that the overhead of calling a nanobind function is lower than that of an equivalent function call
done within CPython. The functions benchmarked here don’t perform CPU-intensive work, so this this mainly
measures the overheads of performing a function call, boxing/unboxing arguments and return values, etc.

The difference to pybind11 is significant: a ~3× improvement for simple functions, and an ~10× improvement
when classes are being passed around. Complexities in pybind11 related to overload resolution, multiple inher-
itance, and holders are the main reasons for this difference. Those features were either simplified or completely
removed in nanobind.

The runtime performance of Cython and nanobind are similar (Cython leads in one experiment and trails in another
one). Cython generates specialized binding code for every function and class, which is highly redundant (long
compile times, large binaries) but can also be beneficial for performance.

Finally, there is a ~1.6-2.1× improvement in both experiments compared to cppyy (please ignore the two [debug]
columns—I did not feel comfortable adjusting the JIT compilation flags; all cppyy bindings are therefore opti-
mized.)

3.2. Binary size 19

https://cppyy.readthedocs.io/en/latest/

nanobind Documentation

3.4 Discussion

Performance improvements compared to pybind11 are the result of optimizations discussed in the previous section.

cppyy also achieves good performance in the comparison above. It is based on dynamic parsing of C++ code and
just-in-time (JIT) compilation of bindings via the LLVM compiler infrastructure. The authors of cppyy report that
their tool produces bindings with much lower overheads compared to pybind11, and the above plots show that this
is indeed true.

While nanobind retakes the performance lead, there are other qualitative factors make these two tools appropriate
to different audiences: cppyy has its origin in CERN’s ROOT mega-project and must be highly dynamic to work
with that codebase: it can parse header files to generate bindings as needed. cppyy works particularly well together
with PyPy and can avoid boxing/unboxing overheads with this combination. The main downside of cppyy is that
it depends on Cling/Clang/LLVM that must be deployed on the user’s side and then run there. There isn’t a way of
pre-generating bindings and then shipping just the output of this process.

nanobind is relatively static in comparison: you must tell it which functions to expose via binding declarations.
These declarations offer a high degree of flexibility that users will typically use to create bindings that feel pythonic.
At compile-time, those declarations turn into a sequence of CPython API calls, which produces self-contained
bindings that are easy to redistribute via PyPI or elsewhere. Tools like cibuildwheel and scikit-build can fully
automate the process of generating Python wheels for each target platform. A minimal example project shows how
to do this automatically via GitHub Actions.

3.5 Details

The microbenchmark wraps a large number of trivial functions that only perform a few additions. The objective
of this is to quantify the overhead of bindings on compilation time, binary size, and runtime performance. The
function-heavy benchmark (func_*) consists of 720 declarations of the form (with permuted integer types)

m.def("test_0050", [](uint16_t a, int64_t b, int32_t c, uint64_t d, uint32_t e, float␣
↪f) {
return a+b+c+d+e+f;

});

while the latter (class_*) does exactly the same computation but packaged up in structs with bindings.

struct Struct50 {
uint16_t a; int64_t b; int32_t c; uint64_t d; uint32_t e; float f;
Struct50(uint16_t a, int64_t b, int32_t c, uint64_t d, uint32_t e, float f)

: a(a), b(b), c(c), d(d), e(e), f(f) { }
float sum() const { return a+b+c+d+e+f; }

};

py::class_<Struct50>(m, "Struct50")
.def(py::init<uint16_t, int64_t, int32_t, uint64_t, uint32_t, float>())
.def("sum", &Struct50::sum);

The code to generate the plots shown above is available here.

Each test was compiled in debug mode (debug) and with optimizations (opt) that minimize size (i.e., -Os). Bench-
marking was performed on a AMD Ryzen 9 7950X workstation running Ubuntu 22.04.2 LTS. CPU boost was dis-
abled, and all core clock frequencies were pinned. Reported timings are the median of five runs. Compilation used
clang++ 15.0.7 with consistent compilation flags for all experiments (see the referenced notebook file for detail).
The used package versions were Python 3.10.6, cppyy 1.12.13, Cython 0.29.28, and nanobind 1.2.0.

3.4. Discussion 20

https://cppyy.readthedocs.io/en/latest/
https://pypi.org
https://cibuildwheel.readthedocs.io/en/stable/
https://scikit-build.readthedocs.io/en/latest/index.html
https://github.com/wjakob/nanobind_example
https://github.com/features/actions
https://github.com/wjakob/nanobind/blob/master/docs/microbenchmark.ipynb

CHAPTER

FOUR

PORTING GUIDE

The API of nanobind is extremely similar to that of pybind11, which makes porting existing projects easy. Parts of
the nanobind documentation are almost verbatim copies pybind11’s documentation.

A number of noteworthy changes are documented below.

4.1 Namespace

nanobind types and functions are located in the nanobind namespace. The following shorthand alias is recom-
mended and used throughout the documentation:

namespace nb = nanobind;

4.2 Name changes

The following macros, types, and functions were renamed:

pybind11 nanobind
PYBIND11_MODULE(..) NB_MODULE(..)
PYBIND11_OVERRIDE_*(..) NB_OVERRIDE_*(..)
error_already_set python_error
type::of<T>() type<T>()
type type_object
reinterpret_borrow<T>(x) borrow<T>(x)
reinterpret_steal<T>(x) steal<T>(x)
.def_readwrite(..) .def_rw(..)
.def_readonly(..) .def_ro(..)
.def_property(..) .def_prop_rw(..)
.def_property_readonly(..) .def_prop_ro(..)
.def_readwrite_static(..) .def_rw_static(..)
.def_readonly_static(..) .def_ro_static(..)
.def_property_static(..) .def_prop_rw_static(..)
.def_property_readonly_static(..) .def_prop_ro_static(..)
register_exception<T> exception<T>

21

https://pybind11.readthedocs.io/en/stable/

nanobind Documentation

4.3 None/null arguments

In contrast to pybind11, nanobind does not permit None-valued function arguments by default. You must enable
them explicitly using the arg::none() argument annotation, e.g.:

m.def("func", &func, "arg"_a.none());

It is also possible to set a None default value, in which case the .none() annotation can be omitted.

m.def("func", &func, "arg"_a = nb::none());

None-valued arguments are only supported by two of the three parameter passing styles described in the section on
information exchange. In particular, they are supported by bindings and wrappers, but not by type casters.

4.4 Shared pointers and holders

When nanobind instantiates a C++ type within Python, the resulting instance data is stored within the cre-
ated Python object (”PyObject”). Alternatively, when an already existing C++ instance is transferred to
Python via a function return value and rv_policy::reference, rv_policy::reference_internal, or
rv_policy::take_ownership, nanobind creates a smaller wrapper PyObject that only stores a pointer to the
instance data.

This is very different from pybind11, where the instance PyObject contained a holder type (typically
std::unique_ptr<T>) storing a pointer to the instance data. Dealing with holders caused inefficiencies and
introduced complexity; they were therefore removed in nanobind. This has implications on object ownership,
shared ownership, and interactions with C++ shared/unique pointers. The intermediate and advanced sections on
object ownership provide further detail.

The gist is that it is no longer necessary to specify holder types in the type declaration:

pybind11:

py::class_<MyType, std::shared_ptr<MyType>>(m, "MyType")

nanobind:

nb::class_<MyType>(m, "MyType")

To bind functions that exchange shared/unique pointers, you must add one or both of the following include directives
to your code:

#include <nanobind/stl/unique_ptr.h>
#include <nanobind/stl/shared_ptr.h>

Binding functions that take std::unique_ptr<T> arguments involves some limitations that can be avoided by
changing their signatures to std::unique_ptr<T, nb::deleter<T>> (details).

Use of std::enable_shared_from_this<T> is permitted, but since nanobind does not use holder types, an
object constructed in Python will typically not have any associated std::shared_ptr<T> until it is passed to a
C++ function that accepts std::shared_ptr<T>. That means a C++ function that accepts a raw T* and calls
shared_from_this() on it might stop working when ported from pybind11 to nanobind. You can solve this
problem by always passing such objects across the Python/C++ boundary as std::shared_ptr<T> rather than as
T*. See the advanced section on object ownership for more details.

4.3. None/null arguments 22

nanobind Documentation

4.5 Custom constructors

In pybind11, custom constructors (i.e. ones that do not already exist in the C++ class) could be specified as a
lambda function returning an instance of the desired type.

py::class_<MyType>(m, "MyType")
.def(py::init([](int) { return MyType(...); }));

Unfortunately, the implementation of this feature was quite complex and often required further internal calls to
the move or copy constructor. nanobind instead reverts to how pybind11 originally implemented this feature using
in-place construction (placement new):

nb::class_<MyType>(m, "MyType")
.def("__init__", [](MyType *t) { new (t) MyType(...); });

The provided lambda function will be called with a pointer to uninitialized memory that has already been allocated
(this memory region is co-located with the Python object for reasons of efficiency). The lambda function can
then either run an in-place constructor and return normally (in which case the instance is assumed to be correctly
constructed) or fail by raising an exception.

To turn an existing factory function into a constructor, you will need to combine the above pattern with an invocation
of the move/copy-constructor, e.g.:

nb::class_<MyType>(m, "MyType")
.def("__init__", [](MyType *t) { new (t) MyType(MyType::create()); });

4.6 Implicit conversions

In pybind11, implicit conversions were specified using a follow-up function call. This also works in nanobind, but
it is recommended that you already specify them within the constructor declaration:

pybind11:

py::class_<MyType>(m, "MyType")
.def(py::init<MyOtherType>());

py::implicitly_convertible<MyOtherType, MyType>();

nanobind:

nb::class_<MyType>(m, "MyType")
.def(nb::init_implicit<MyOtherType>());

4.7 Trampoline classes

Trampolines, i.e., polymorphic class implementations that forward virtual function calls to Python, now require
an extra NB_TRAMPOLINE(parent, size) declaration, where parent refers to the parent class and size is at
least as big as the number of NB_OVERRIDE_*() calls. nanobind caches information to enable efficient function
dispatch, for which it must know the number of trampoline “slots”.

The macro PYBIND11_OVERRIDE_*(..) required the base type and return value as the first two arguments. This
information is no longer needed in nanobind, and the arguments should be removed in NB_OVERRIDE_*():

An example:

4.5. Custom constructors 23

https://en.wikipedia.org/wiki/Placement_syntax

nanobind Documentation

struct PyAnimal : Animal {
NB_TRAMPOLINE(Animal, 1);

std::string name() const override {
NB_OVERRIDE(name);

}
};

Trampoline declarations with an insufficient size may eventually trigger a Python RuntimeError exception with
a descriptive label, e.g.:

nanobind::detail::get_trampoline('PyAnimal::what()'): the trampoline ran out of
slots (you will need to increase the value provided to the NB_TRAMPOLINE() macro)

4.8 Iterator bindings

Use of the nb::make_iterator(), nb::make_key_iterator(), and nb::make_value_iterator() func-
tions requires including the additional header file nanobind/make_iterator.h. The interface of these functions
has also slightly changed: all take a Python scope and a name as first and second arguments, which are used to
permanently “install” the iterator type (which is created on demand). See the test suite for a worked out example.

4.9 Type casters

The API of custom type casters has changed significantly. The following changes are needed:

• load() was renamed to from_python(). The function now takes an extra uint8_t flags parameter
(instead bool convert, which is now represented by the flag nb::detail::cast_flags::convert). A
cleanup_list * pointer keeps track of Python temporaries that are created by the conversion, and which
need to be deallocated after a function call has taken place.

flags and cleanup should be passed to any recursive usage of type_caster::from_python(). If
casting fails due to a Python exception, the function should clear it (PyErr_Clear()) and return false.
If a severe error condition arises that should be reported, use Python warning API calls for this, e.g.
PyErr_WarnFormat().

• cast() was renamed to from_cpp(). The function takes a return value policy (as before) and a
cleanup_list * pointer. If casting fails due to a Python exception, the function should leave the error
set (note the asymmetry compared to from_python()) and return nullptr.

Note that the cleanup list is only available when from_python() or from_cpp() are called as part of function
dispatch, while usage by nb::cast() may set cleanup to nullptr if implicit conversions are not enabled. This
case should be handled gracefully by refusing the conversion if the cleanup list is absolutely required.

Type casters may not raise C++ exceptions. Both from_python() and from_cpp() must be annotated with
noexcept. Exceptions or failure conditions caused by a conversion should instead be caught within the function
body and handled as follows:

• from_python(): return false. That’s it. (Failed Python to C++ conversion occur all the time while dis-
patching calls, causing nanobind to simply move to the next function overload. Dedicated error reporting
would add undesirable overheads). In case of a severe internal error, use the CPython warning API (e.g.,
PyErr_Warn()) to notify the user.

• from_cpp(): a failure here is more serious, since a return value of a successfully evaluated cannot be con-
verted, causing the call to fail. To provide further detail, use the CPython error API (e.g., PyErr_Format())
and return an invalid handle (return nb::handle();).

The std::pair<T1, T2> type caster (link) may be useful as a starting point of custom implementations.

4.8. Iterator bindings 24

https://github.com/wjakob/nanobind/blob/master/tests/test_make_iterator.cpp
https://github.com/wjakob/nanobind/blob/master/include/nanobind/stl/pair.h

nanobind Documentation

4.10 Removed features

A number of pybind11 features are unavailable in nanobind. The list below uses the following symbols:

• ○: This removal is a design choice. Use pybind11 if you need this feature.

• ●: Unclear, to be discussed.

Removed features include:

• ○Multiple inheritance: this feature was a persistent source of complexity in pybind11 and it is one of the
main casualties in creating nanobind.

• ○ Holders: nanobind instances co-locate instance data with a Python object instead of accessing it via a
holder type. This is a major difference compared to pybind11 and will require changes to binding code that
used custom holders (e.g. unique or shared pointers). The intermediate and advanced sections on object
ownership provide further detail.

• ○Multi-intepreter, Embedding: The ability to embed Python in an executable or run several independent
Python interpreters in the same process is unsupported. Nanobind caters to bindings only. Multi-interpreter
support would require TLS lookups for nanobind data structures, which is undesirable.

• ○ Function binding annotations: The pos_only argument annotation was removed. However, the same
behavior can be achieved by creating unnamed arguments; see the discussion in the section on keyword-only
arguments.

• ○Metaclasses: creating types with custom metaclasses is unsupported.

• ○Module-local bindings: support was removed (both for types and exceptions).

• ○ Custom allocation: C++ classes with an overloaded or deleted operator new / operator delete are
not supported.

• ○ Compilation: workarounds for buggy or non-standard-compliant compilers were removed and will not be
reintroduced.

• ○ The options class for customizing docstring generation was removed.

• ○ The NumPy array class (py::array) was removed in exchange for a more powerful alternative
(nb::ndarray<..>) that additionally supports CPU/GPU tensors produced by various frameworks
(NumPy, PyTorch, TensorFlow, JAX, etc.). Its API is not compatible with pybind11, however.

• ● Buffer protocol binding (.def_buffer()) was removed in favor of nb::ndarray<..>.

• ● Support for evaluating Python files was removed.

Bullet points marked with ●may be reintroduced eventually, but this will need to be done in a careful opt-in manner
that does not affect code complexity, binary size, and compilation/runtime performance of basic bindings that don’t
depend on these features.

4.10. Removed features 25

CHAPTER

FIVE

FREQUENTLY ASKED QUESTIONS

5.1 Importing my module fails with an ImportError

If importing the module fails as shown below, you have not specified a matching module name in
nanobind_add_module() and NB_MODULE().

>>> import my_ext
ImportError: dynamic module does not define module export function (PyInit_my_ext)

5.2 Importing fails due to missing [lib]nanobind.{dylib,so,dll}

If importing the module fails as shown below, the extension cannot find the nanobind shared library component.

>>> import my_ext
ImportError: dlopen(my_ext.cpython-311-darwin.so, 0x0002):
Library not loaded: '@rpath/libnanobind.dylib'

This is really more of a general C++/CMake/build system issue than one of nanobind specifically. There are two
solutions:

1. Build the library component statically by specifying the NB_STATIC flag in nanobind_add_module() (this
is the default starting with nanobind 0.2.0).

2. Ensure that the various shared libraries are installed in the right destination, and that their rpath is set so that
they can find each other.

You can control the build output directory of the shared library component using the following CMake
command:

set_target_properties(nanobind
PROPERTIES
LIBRARY_OUTPUT_DIRECTORY <path>
LIBRARY_OUTPUT_DIRECTORY_RELEASE <path>
LIBRARY_OUTPUT_DIRECTORY_DEBUG <path>
LIBRARY_OUTPUT_DIRECTORY_RELWITHDEBINFO <path>
LIBRARY_OUTPUT_DIRECTORY_MINSIZEREL <path>

)

Depending on the flags provided to nanobind_add_module(), the shared library component may have a
different name following the pattern nanobind[-abi3][-lto].

The following CMake commands may be useful to adjust the build and install rpath of the extension:

26

https://en.wikipedia.org/wiki/Rpath
https://en.wikipedia.org/wiki/Rpath

nanobind Documentation

set_property(TARGET my_ext APPEND PROPERTY BUILD_RPATH "$<TARGET_FILE_
↪DIR:nanobind>")

set_property(TARGET my_ext APPEND PROPERTY INSTALL_RPATH ".. ?? ..")

5.3 Why are reference arguments not updated?

Functions like the following example can be exposed in Python, but they won’t propagate updates to mutable
reference arguments.

void increment(int &i) {
i++;

}

This isn’t specific to builtin types but also applies to STL collections and other types when they are handled using
type casters. Please read the full section on information exchange between C++ and Python to understand the issue
and alternatives.

5.4 Why am I getting errors about leaked functions and types?

When the Python interpreter shuts down, it informs nanobind about this using a Py_AtExit() callback. If any
nanobind-created instances, functions, or types are still alive at this point, then something went wrong because they
should have been deleted by the garbage collector. Although this does not always indicate a serious problem, the
decision was made to have nanobind complain rather noisily about the presence of such leaks.

Other binding tools (e.g., pybind11) are on the opposite of the spectrum: because they never report leaks, it is quite
easy to accidentally introduce many of them until a developer eventually realizes that something is very wrong.

Leaks mainly occur for four reasons:

• Reference counting bugs. If you write raw Python C API code or use the nanobind wrappers includ-
ing functions like Py_[X]INCREF(), Py_[X]DECREF(), nb::steal(), nb::borrow(), .dec_ref(), .
inc_ref() , etc., then incorrect use of such calls can cause a reference to leak that prevents the associated
object from being deleted.

• Reference cycles. Python’s garbage collector frees unused objects that are part of a circular reference chains
(e.g., A->B->C->A). This requires all types in the cycle to implement the tp_traverse type slot, and at least
one of them to implement the tp_clear type slot. See the section on cyclic garbage collection for details
on how to do this with nanobind.

• Interactions with other tools that leak references. Python extension libraries—especially huge ones with
C library components like PyTorch, Tensorflow, etc., have been observed to leak references to nanobind
objects.

Some of these frameworks cache JIT-compiled functions based on the arguments with which they were
called, and such caching schemes could leak references to nanobind types if they aren’t cleaned up by the
responsible extensions (this is a hypothesis). In this case, the leak would be benign—even so, it should be
fixed in the responsible framework so that leak warnings aren’t cluttered with flukes and can be more broadly
useful.

• Older Python versions: Very old Python versions (e.g., 3.8) don’t do a good job cleaning up global refer-
ences when the interpreter shuts down. The following code may leak a reference if it is a top-level statement
in a Python file or the REPL.

a = my_ext.MyObject()

Such a warning is benign and does not indicate an actual leak. It simply highlights a flaws in the interpreter
shutdown logic of old Python versions. Wrap your code into a function to address this issue even on such
versions:

5.3. Why are reference arguments not updated? 27

nanobind Documentation

def run():
a = my_ext.MyObject()
...

if __name__ == '__main__':
run()

• Exceptions. Some exceptions such as AttributeError have been observed to hold references, e.g. to the
object which lacked the desired attribute. If the last exception raised by the program references a nanobind
instance, then this may be reported as a leak since Python finalization appears not to release the exception
object. See issue #376 for a discussion.

If you find leak warnings to be a nuisance, then you can disable them in the C++ binding code via the
nb::set_leak_warnings() function.

nb::set_leak_warnings(false);

This is a global flag shared by all nanobind extension libraries in the same ABI domain. If you do so, then please
isolate your extension from others by passing the NB_DOMAIN parameter to nanobind_add_module().

5.5 Compilation fails with a static assertion mentioning
NB_MAKE_OPAQUE()

If your compiler generates an error of the following sort, you are mixing type casters and bindings in a way that
has them competing for the same types:

nanobind/include/nanobind/nb_class.h:207:40: error: static assertion failed: ⤦
Attempted to create a constructor for a type that won't be handled by the nanobind's␣
↪⤦

class type caster. Is it possible that you forgot to add NB_MAKE_OPAQUE() somewhere?

For example, the following won’t work:

#include <nanobind/stl/vector.h>
#include <nanobind/stl/bind_vector.h>

namespace nb = nanobind;

NB_MODULE(my_ext, m) {
// The following line cannot be compiled
nb::bind_vector<std::vector<int>>(m, "VectorInt");

// This doesn't work either
nb::class_<std::vector<int>>(m, "VectorInt");

}

This is not specific to STL vectors and will happen whenever casters and bindings target overlapping types.

Type casters employ a pattern matching technique known as partial template specialization. For example,
nanobind/stl/vector.h installs a pattern that detects any use of std::vector<T, Allocator>, which over-
laps with the above binding of a specific vector type.

The deeper reason for this conflict is that type casters enable a compile-time transformation of nanobind code,
which can conflict with binding declarations that are a runtime construct.

To fix the conflict in this example, add the line NB_MAKE_OPAQUE(T), which adds another partial template special-
ization pattern for T that says: “ignore T and don’t use a type caster to handle it”.

5.5. Compilation fails with a static assertion mentioning NB_MAKE_OPAQUE() 28

https://github.com/wjakob/nanobind/issues/376
https://en.wikipedia.org/wiki/Partial_template_specialization

nanobind Documentation

NB_MAKE_OPAQUE(std::vector<int>);

Warning: If your extension consists of multiple source code files that involve overlapping use of type casters
and bindings, you are treading on thin ice. It is easy to violate the One Definition Rule (ODR) [details] in such
a case, which may lead to undefined behavior (miscompilations, etc.).

Here is a hypothetical example of an ODR violation: an extension contains two source code files: src_1.cpp
and src_2.cpp.

• src_1.cpp binds a function that returns an std::vector<int> using a type caster (nanobind/stl/
vector.h).

• src_2.cpp binds a function that returns an std::vector<int> using a binding (nanobind/stl/
bind_vector.h), and it also installs the needed type binding.

The problem is that a partially specialized class in the nanobind implementation namespace (specifically,
nanobind::detail::type_caster<std::vector<int>>) now resolves to two different implementations
in the two compilation units. It is unclear how such a conflict should be resolved at the linking stage, and you
should consider code using such constructions broken.

To avoid this issue altogether, we recommend that you create a single include file (e.g., binding_core.h)
containing all of the nanobind include files (binding, type casters), your own custom type casters (if present),
and NB_MAKE_OPAQUE(T) declarations. Include this header consistently in all binding compilation units. The
construction shown in the example (mixing type casters and bindings for the same type) is not allowed, and
cannot occur when following the recommendation.

5.6 How can I preserve the const-ness of values in bindings?

This is a limitation of nanobind, which casts away const in function arguments and return values. This is in line
with the Python language, which has no concept of const values. Additional care is therefore needed to avoid bugs
that would be caught by the type checker in a traditional C++ program.

5.7 How can I reduce build time?

Large binding projects should be partitioned into multiple files, as shown in the following example:

example.cpp:

void init_ex1(nb::module_ &);
void init_ex2(nb::module_ &);
/* ... */

NB_MODULE(my_ext, m) {
init_ex1(m);
init_ex2(m);
/* ... */

}

ex1.cpp:

void init_ex1(nb::module_ &m) {
m.def("add", [](int a, int b) { return a + b; });

}

ex2.cpp:

5.6. How can I preserve the const-ness of values in bindings? 29

https://en.wikipedia.org/wiki/One_Definition_Rule

nanobind Documentation

void init_ex2(nb::module_ &m) {
m.def("sub", [](int a, int b) { return a - b; });

}

As shown above, the various init_ex functions should be contained in separate files that can be compiled inde-
pendently from one another, and then linked together into the same final shared object. Following this approach
will:

1. reduce memory requirements per compilation unit.

2. enable parallel builds (if desired).

3. allow for faster incremental builds. For instance, when a single class definition is changed, only a subset of
the binding code will generally need to be recompiled.

5.8 How can I avoid conflicts with other projects using nanobind?

Suppose that a type binding in your project conflicts with another extension, for example because both expose a
common type (e.g., std::latch). nanobind will warn whenever it detects such a conflict:

RuntimeWarning: nanobind: type 'latch' was already registered!

In the worst case, this could actually break both packages (especially if the bindings of the two packages expose an
inconsistent/incompatible API).

The higher-level issue here is that nanobind will by default try to make type bindings visible across extensions
because this is helpful to partition large binding projects into smaller parts. Such information exchange requires
that the extensions:

• use the same nanobind ABI version (see the Changelog for details).

• use the same compiler (extensions built with GCC and Clang are isolated from each other).

• use ABI-compatible versions of the C++ library.

• use the stable ABI interface consistently (stable and unstable builds are isolated from each other).

• use debug/release mode consistently (debug and release builds are isolated from each other).

In addition, nanobind provides a feature to intentionally scope extensions to a named domain to avoid conflicts
with other extensions. To do so, specify the NB_DOMAIN parameter in CMake:

nanobind_add_module(my_ext
NB_DOMAIN my_project
my_ext.cpp)

In this case, inter-extension type visibility is furthermore restricted to extensions in the "my_project" domain.

5.9 I’d like to use this project, but with $BUILD_SYSTEM instead of
CMake

A difficult aspect of C++ software development is the sheer number of competing build systems, including

• CMake,

• Meson,

• xmake,

• Premake,

5.8. How can I avoid conflicts with other projects using nanobind? 30

https://cmake.org
https://mesonbuild.com
https://xmake.io/#/
https://premake.github.io

nanobind Documentation

• Bazel,

• Conan,

• Autotools,

• and many others.

The author of this project has some familiarity with CMake but lacks expertise with this large space of alternative
tools. Maintaining and shipping support for other build systems is therefore considered beyond the scope of this
nano project (see also the why? part of the documentation that explains the rationale for being somewhat restrictive
towards external contributions).

If you wish to create and maintain an alternative interface to nanobind, then my request would be that you create
and maintain separate repository (see, e.g., pybind11_bazel as an example how how this was handled in the case of
pybind11). Please carefully review the file nanobind-config.cmake. Besides getting things to compile, it specifies a
number of platform-dependent compiler and linker options that are needed to produce optimal (small and efficient)
binaries. Nanobind uses a complicated and non-standard set of linker parameters on macOS, which is the result of
a lengthy investigation. Other parameters like linker-level dead code elimination and size-based optimization were
similarly added following careful analysis. The CMake build system provides the ability to compile libnanobind
into either a shared or a static library, to optionally target the stable ABI, and to isolate it from other extensions via
the NB_DOMAIN parameter. All of these are features that would be nice to retain in an alternative build system. If
you’ve made a build system compatible with another tool that is sufficiently feature-complete, then please file an
issue and I am happy to reference it in the documentation.

5.10 How to cite this project?

Please use the following BibTeX template to cite nanobind in scientific discourse:

@misc{nanobind,
author = {Wenzel Jakob},
year = {2022},
note = {https://github.com/wjakob/nanobind},
title = {nanobind: tiny and efficient C++/Python bindings}

}

5.10. How to cite this project? 31

https://bazel.build
https://docs.conan.io/2/
https://www.gnu.org/software/automake
https://github.com/pybind/pybind11_bazel
https://github.com/wjakob/nanobind/blob/master/cmake/nanobind-config.cmake
https://github.com/wjakob/nanobind/commit/2f29ec7d5fbebd5f55fb52da297c8d197279f659
https://github.com/python/cpython/issues/97524#issuecomment-1458855301

CHAPTER

SIX

INSTALLING THE LIBRARY

The nanobind project is hosted at wjakob/nanobind on GitHub. To use the library in your own projects, it is usually
easiest to install it using one of the following three methods:

6.1 Install via Pip (recommended)

Run the following command in your terminal to install a package containing both C++ and CMake source code
needed to compile extension modules.

python -m pip install nanobind

6.2 Install via Conda

The following alternative installs an equivalent package through Conda. It is provided for users that develop Conda-
based extensions with a build-time dependency on nanobind, in which case the PyPI package cannot be used.

conda install -c conda-forge nanobind

6.3 Install as a Git submodule

If you prefer not to involve external package managers, and if your project uses the Git control system, you may
also directly reference nanobind as a Git submodule. In the main directory of your repository, run the following
commands:

git submodule add https://github.com/wjakob/nanobind ext/nanobind
git submodule update --init --recursive

This assumes you are placing your dependencies in ext/.

The next section will explain how to set up a basic build system that you can use to build your first extension
module.

32

https://github.com/wjakob/nanobind
https://git-scm.com/book/en/v2/Git-Tools-Submodules

CHAPTER

SEVEN

SETTING UP A BUILD SYSTEM

This section assumes that you have followed the instructions to install nanobind. The easiest way to compile a
nanobind-based extension involves a CMake-based build system. Other build systems can likely be used as well,
but they are not officially supported. (The first section of the CMake API reference mentions some alternatives.)

Here, we will create a new package from scratch. If you already have an existing CMake build system, it should
be straightforward to merge some of the following snippets into it.

7.1 Preliminaries

Begin by creating a new file named CMakeLists.txt in the root directory of your project. It should start with the
following lines that declare a project name and tested CMake version range. The third line line searches for Python
>= 3.8 including the Development.Module component required by nanobind.

cmake_minimum_required(VERSION 3.15...3.27)
project(my_project) # Replace 'my_project' with the name of your project
find_package(Python 3.8 COMPONENTS Interpreter Development.Module REQUIRED)

Add the following lines below. They configure CMake to perform an optimized release build by default unless
another build type is specified. Without this addition, binding code may run slowly and produce large binaries.

if (NOT CMAKE_BUILD_TYPE AND NOT CMAKE_CONFIGURATION_TYPES)
set(CMAKE_BUILD_TYPE Release CACHE STRING "Choose the type of build." FORCE)
set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS "Debug" "Release" "MinSizeRel"

↪"RelWithDebInfo")
endif()

7.2 Finding nanobind

Next, we must inform CMake about the presence of nanobind so that it can load the functionality needed to compile
extension modules. The details of this step depend on how you installed nanobind, in the previous section.

1. If you installed nanobind as a Pip or Conda package, append the following lines at the end of CMakeLists.
txt. They query the package to determine its installation path and then import it.

Detect the installed nanobind package and import it into CMake
execute_process(
COMMAND "${Python_EXECUTABLE}" -m nanobind --cmake_dir
OUTPUT_STRIP_TRAILING_WHITESPACE OUTPUT_VARIABLE NB_DIR)

list(APPEND CMAKE_PREFIX_PATH "${NB_DIR}")
find_package(nanobind CONFIG REQUIRED)

2. If you installed nanobind as a Git submodule, append the following lines at the end of CMakeLists.txt to
point CMake to the directory where nanobind is checked out.

33

https://git-scm.com/book/en/v2/Git-Tools-Submodules

nanobind Documentation

add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ext/nanobind)

7.3 Building an extension

Finally, we are ready to build an extension! Append the following line at the end of CMakeLists.txt. It will
compile a new extension named my_ext from the source code contained in the file my_ext.cpp.

nanobind_add_module(my_ext my_ext.cpp)

nanobind_add_module() resembles standard CMake commands like add_executable() and
add_library(). Any number of source code and header files can be declared when the extension is more
complex and spread out over multiple files.

Note: One opinionated choice of nanobind_add_module() is that it optimizes the size of the extension by default
(i.e., -Os is passed to the compiler regardless of the project-wide settings). You must specify the NOMINSIZE
parameter to the command to disable this behavior and, e.g., optimize extension code for speed (i.e., -O3):

nanobind_add_module(my_ext NOMINSIZE my_ext.cpp)

The default is chosen this way since extension code usually wraps existing C++ libraries, in which the main com-
putation takes place. Optimizing the bindings for speed does not measurably improve performance, but it does
make the bindings significantly larger.

If you observe slowdowns when porting a pybind11 extension, or if your extension performs significant amounts
of work within the binding layer, then you may want to experiment with passing the NOMINSIZE parameter.

The next section will review the contents of example module implementation in my_ext.cpp.

7.3. Building an extension 34

CHAPTER

EIGHT

CREATING YOUR FIRST EXTENSION

This section assumes that you have followed the instructions to install nanobind and set up a basic build system.

We are now ready to define a first basic extension that wraps a function to add two numbers. Create a new file
my_ext.cpp with the following contents (the meaning of this code will be explained shortly):

#include <nanobind/nanobind.h>

int add(int a, int b) { return a + b; }

NB_MODULE(my_ext, m) {
m.def("add", &add);

}

Afterwards, you should be able to compile and run the extension.

8.1 Building using CMake

Launch cmake in the project directory to set up a build system that will write all output into a separate build
subdirectory.

cmake -S . -B build

Note: If this step fails with an error message saying that Python cannot be found, you will need to install a suitable
Python 3 development package.

For example, on Ubuntu you would run:

apt install libpython3-dev

On Windows, you we recommend downloading and running one of the installers provided by the Python foundation.

Note: If you have multiple versions of Python on your system, the CMake build system may not find the specific
version you had in mind. This is problematic: extension built for one version of Python usually won’t run on
another version. You can provide a hint to the build system to help it find a specific version.

In this case, delete the build folder (if you already created one) and re-run cmake while specifying the command
line parameter -DPython_EXECUTABLE=<path to python executable>.

rm -Rf build
cmake -S . -B build -DPython_EXECUTABLE=<path to python executable>

Assuming the cmake ran without issues, you can now compile the extension using the following command:

35

https://www.python.org/downloads

nanobind Documentation

cmake --build build

Finally, navigate into the build directory and launch an interactive Python session:

cd build
python3

(The default build output directory is different on Windows: use cd build\Debug and python instead of the
above.)

You should be able to import the extension and call the newly defined function my_ext.add().

Python 3.11.1 (main, Dec 23 2022, 09:28:24) [Clang 14.0.0 (clang-1400.0.29.202)] on␣
↪darwin

Type "help", "copyright", "credits" or "license" for more information.
>>> import my_ext
>>> my_ext.add(1, 2)
3

8.2 Binding functions

Let’s step through the example binding code to understand what each line does. The directive on the first line
includes the core parts of nanobind:

#include <nanobind/nanobind.h>

nanobind also provides many optional add-on components that are aren’t included by default. They are discussed
throughout this documentation along with pointers to the header files that must be included when using them.

Next is the function to be exposed in Python, followed by the mysterious-looking NB_MODULE macro.

int add(int a, int b) { return a + b; }

NB_MODULE(my_ext, m) {
m.def("add", &add);

}

NB_MODULE(my_ext, m) declares the extension with the name my_ext. This name must match the extension
name provided to the nanobind_add_module() function in the CMake build system—otherwise, importing the
extension will fail with an obscure error about a missing symbol. The second argument (m) names a variable of
type nanobind::module_ that represents the created module.

The part within curly braces ({, }) consists of a sequence of statements that initialize the desired function and class
bindings. It is best thought of as the main() function that will run when a user imports the extension into a running
Python session.

In this case, there is only one binding declaration that wraps the add referenced using the ampersand (&) operator.
nanobind determines the function’s type signature and generates the necessary binding code. All of this happens
automatically at compile time.

Note: Notice how little code was needed to expose our function to Python: all details regarding the function’s
parameters and return value were automatically inferred using template metaprogramming. This overall approach
and the used syntax go back to Boost.Python, though the implementation in nanobind is very different.

8.2. Binding functions 36

https://github.com/boostorg/python

nanobind Documentation

8.3 Keyword and default arguments

There are limits to what nanobind can determine at compile time. For example, the argument names were lost and
calling add() in Python using keyword arguments fails:

>>> my_ext.add(a=1, b=2)
TypeError: add(): incompatible function arguments. The following argument types are␣
↪supported:

1. add(arg0: int, arg1: int, /) -> int

Invoked with types: kwargs = { a: int, b: int }

Let’s improve the bindings to fix this. We will also add a docstring and a default b argument so that add()
increments when only one value is provided. The modified binding code looks as follows:

#include <nanobind/nanobind.h>

namespace nb = nanobind;
using namespace nb::literals;

int add(int a, int b = 1) { return a + b; }

NB_MODULE(my_ext, m) {
m.def("add", &add, "a"_a, "b"_a = 1,

"This function adds two numbers and increments if only one is provided.");
}

Let’s go through all of the changed lines. The first sets up a short namespace alias named nb:

namespace nb = nanobind;

This is convenient because binding code usually ends up referencing many classes and functions from this names-
pace. The subsequent using declaration is optional and enables a convenient syntax for annotating function argu-
ments:

using namespace nb::literals;

Without it, you would have to change every occurrence of the pattern "..."_a to the more verbose nb::arg(".
..").

The function binding declaration includes several changes. It is common to pile on a few attributes and modifiers
in .def(...) binding declarations, which can be specified in any order.

m.def("add", &add, "a"_a, "b"_a = 1,
"This function adds two numbers and increments if only one is provided.");

The string at the end is a docstring that will later show up in generated documentation. The argument annotations
("a"_a, "b"_a) associate parameters with names for keyword-based argument passing.

Besides argument names, nanobind also cannot infer default arguments—you must repeat them in the binding
declaration. In the above snippet, the "b"_a = 1 annotation informs nanobind about the value of the default
argument.

8.3. Keyword and default arguments 37

https://peps.python.org/pep-0257/

nanobind Documentation

8.4 Exporting values

To export a value, use the attr() function to register it in the module as shown below. Bound classes and built-in
types are automatically converted when they are assigned in this way.

m.attr("the_answer") = 42;

8.5 Docstrings

Let’s add one more bit of flourish by assigning a docstring to the extension module itself. Include the following
line anywhere in the body of the NB_MODULE() {...} declaration:

m.doc() = "A simple example python extension";

After recompiling the extension, you should be able to view the associated documentation using the help() builtin
or the ? operator in IPython.

>>> import my_ext
>>> help(my_ext)

Help on module my_ext:

NAME
my_ext - A simple example python extension

DATA
add = <nanobind.nb_func object>

add(a: int, b: int = 1) -> int

This function adds two numbers and increments if only one is provided

the_answer = 42

FILE
/Users/wjakob/my_ext/my_ext.cpython-311-darwin.so

The automatically generated documentation covers functions, classes, parameter and return value type information,
argument names, and default arguments.

8.6 Binding a custom type

Let’s now turn to an object oriented example. We will create bindings for a simple C++ type named Dog defined
as follows:

#include <string>

struct Dog {
std::string name;

std::string bark() const {
return name + ": woof!";

}
};

8.4. Exporting values 38

nanobind Documentation

The Dog bindings look as follows:

#include <nanobind/nanobind.h>
#include <nanobind/stl/string.h>

namespace nb = nanobind;

NB_MODULE(my_ext, m) {
nb::class_<Dog>(m, "Dog")

.def(nb::init<>())

.def(nb::init<const std::string &>())

.def("bark", &Dog::bark)

.def_rw("name", &Dog::name);
}

Let’s look at selected lines of this example, starting with the added include directive:

#include <nanobind/stl/string.h>

nanobind has a minimal core and initially doesn’t know how to deal with STL types like std::string. This line
imports a type caster that realizes a bidirectional conversion (C++ std::string↔ Python str) to make the ex-
ample usable. An upcoming documentation section will provide more detail on type casters and other alternatives.

The class binding declaration nb::class_<T>() supports both class and struct-style data structures.

nb::class_<Dog>(m, "Dog")

Here, it associates the C++ type Dog with a new Python type named "Dog" and installs it in the nb::module_ m.

Initially, this type is completely empty—it has no members and cannot be instantiated. The subsequent chain of
binding declarations binds two constructor overloads (via nb::init<...>()), a method, and the mutable name
field (via .def_rw(..), where rw stands for read/write access).

.def(nb::init<>())

.def(nb::init<const std::string &>())

.def("bark", &Dog::bark)

.def_rw("name", &Dog::name);

An interactive Python session demonstrating this example is shown below:

Python 3.11.1 (main, Dec 23 2022, 09:28:24) [Clang 14.0.0 (clang-1400.0.29.202)] on␣
↪darwin

Type "help", "copyright", "credits" or "license" for more information.
>>> import my_ext
>>> d = my_ext.Dog('Max')
>>> print(d)
<my_ext.Dog object at 0x1044540f0>
>>> d.name
'Max'
>>> d.name = 'Charlie'
>>> d.bark()
'Charlie: woof!'

The example showed how to bind constructors, methods, and mutable fields. Many other things can be bound using
analogous nb::class_<...> methods:

8.6. Binding a custom type 39

nanobind Documentation

Type Method
Methods & constructors .def()
Fields .def_ro(), .def_rw()
Properties .def_prop_ro(), .def_prop_rw()
Static methods .def_static()
Static fields .def_ro_static(), .def_rw_static()
Static properties .def_prop_ro_static(), .def_prop_rw_static()

Note: All of these binding declarations support docstrings, keyword, and default argument annotations as before.

8.7 Binding lambda functions

Note how print(d) produced a rather useless summary in the example above:

>>> print(d)
<my_ext.Dog object at 0x1044540f0>

To address this, we can add a special Python method named __repr__ that returns a human-readable summary.
Unfortunately, a corresponding function with such functionality does not currently exist in the C++ type, and it
would be nice if we did not have to modify it. We can bind a lambda function to achieve both goals:

nb::class_<Dog>(m, "Dog")
// ... skipped ...
.def("__repr__",

[](const Dog &p) { return "<my_ext.Dog named '" + p.name + "'>"; });

nanobind supports both stateless1 and stateful lambda closures.

8.8 Higher order functions

nanobind’s support for higher-order functions2 further blurs the language boundary. The snippet below extends
the Dog class with higher-order function bark_later() that calls nb::cpp_function() to convert and return a
stateful C++ lambda function (callback) as a Python function object.

nb::class_<Dog>(m, "Dog")
// ... skipped ...
.def("bark_later", [](const Dog &p) {

auto callback = [name = p.name] {
nb::print(nb::str("{}: woof!").format(name));

};
return nb::cpp_function(callback);

});

The lambda function captures the Dog::name() property (a C++ std::string) and in turn calls Python functions
(nb::print(), nb::str::format()) to print onto the console. Here is an example use of the binding in Python:

1 Stateless closures are those with an empty pair of brackets [] as the capture object.
2 Higher-order functions are functions that take functions as arguments and/or return them.

8.7. Binding lambda functions 40

nanobind Documentation

>>> f = d.bark_later()
>>> f
<nanobind.nb_func object at 0x10537c140>
>>> f()
Charlie: woof!

8.9 Wrap-up

This concludes the basic part of the documentation, which provided a first taste of nanobind and typical steps
needed to create a custom extension.

The upcoming intermediate-level material covers performance and safety-critical points:

• C++ and Python can exchange information in various different ways.

Which one is best for a particular task?

• A bound object can simultaneously exist in both C++ and Python.

Who owns it? When is it safe to delete it?

Following these topics, the documentation revisits function and class bindings in full detail.

8.9. Wrap-up 41

CHAPTER

NINE

EXCHANGING INFORMATION

nanobind offers three fundamentally different ways of exchanging information between Python and C++. Depend-
ing on the task at hand, one will usually be preferable over the others, hence it is important to be aware of their
advantages and disadvantages.

9.1 Option 1: Type Casters

A type caster translates C++ objects into equivalent Python objects and vice versa. The illustration below shows a
translation between C++ (blue) and Python (green) worlds, where a std::vector<int> instance converts from/to
a Python list containing int objects.

Example: The following function doubles the entries of an STL vector and returns the result.

using IntVector = std::vector<int>;

IntVector double_it(const IntVector &in) {
IntVector out(in.size());
for (size_t i = 0; i < in.size(); ++i)

out[i] = in[i] * 2;
return out;

}

To expose it in Python, we can use the std::vector<...> type caster that is located in an optional header file
named nanobind/stl/vector.h:

#include <nanobind/stl/vector.h>

NB_MODULE(my_ext, m) {
m.def("double_it", &double_it);

}

That’s all there is to it. The Python version of the function features an automatically generated docstring, type
checks, and (if needed) error reporting.

>>> import my_ext
>>> my_ext.double_it([1, 2, 3])
[2, 4, 6]

>>> my_ext.double_it([1, 2, 'foo'])
(continues on next page)

42

nanobind Documentation

(continued from previous page)

TypeError: double_it(): incompatible function arguments. The following argument types␣
↪are supported:

1. double_it(arg: list[int], /) -> list[int]

What are the implications of using type casters?

Pro: this approach is simple and convenient, especially when standard (STL) types are involved. Usually, all that is
needed is an #include directive to pull in the right header file. Complex nested types (e.g. vectors of hash tables
of strings) work automatically by combining type casters recursively.

The following table lists the currently available type casters along with links to external projects that provide further
casters:

Type Type caster header
char, char*, void*, nullptr_t, bool, int,
unsigned int, long, unsigned long, . . .

Built-in (no include file needed)

std::array<..> #include <nanobind/stl/array.h>
std::chrono::duration<..>,
std::chrono::time_point<..> (more details)

#include <nanobind/stl/chrono.h>

std::complex<..> #include <nanobind/stl/complex.h>
std::filesystem::path #include <nanobind/stl/filesystem.h>
std::function<..> #include <nanobind/stl/function.h>
std::list<..> #include <nanobind/stl/list.h>
std::map<..> #include <nanobind/stl/map.h>
std::optional<..> #include <nanobind/stl/optional.h>
std::pair<..> #include <nanobind/stl/pair.h>
std::set<..> #include <nanobind/stl/set.h>
std::string #include <nanobind/stl/string.h>
std::string_view #include <nanobind/stl/string_view.h>
std::tuple<..> #include <nanobind/stl/tuple.h>
std::shared_ptr<..> #include <nanobind/stl/shared_ptr.h>
std::unique_ptr<..> #include <nanobind/stl/unique_ptr.h>
std::unordered_set<..> #include <nanobind/stl/unordered_set.h>
std::unordered_map<..> #include <nanobind/stl/unordered_map.h>
std::variant<..> #include <nanobind/stl/variant.h>
std::vector<..> #include <nanobind/stl/vector.h>
nb::ndarray<..> #include <nanobind/ndarray.h>
Eigen::Matrix<..>, Eigen::Array<..>,
Eigen::Ref<..>, Eigen::Map<..>

#include <nanobind/eigen/dense.h>

Eigen::SparseMatrix<..> #include <nanobind/eigen/sparse.h>
Apache Arrow types https://github.com/maximiliank/nanobind_pyarrow
. . . Please reach out if you have additions to this list.

Con: Every transition between the Python and C++ side will generally require a conversion step (in this case, to
re-create all list elements). This can be wasteful when the other side only needs to access a small part of the data.
Conversely, the overhead should not be a problem when the data is fully “consumed” following conversion.

A select few type casters (std::unique_ptr<..>, std::shared_ptr<..>, nb::ndarray, and Eigen::*) are
special in the sense that they can perform a type conversion without copying the underlying data. Besides those
few exceptions type casting always implies that a copy is made.

9.1. Option 1: Type Casters 43

https://github.com/maximiliank/nanobind_pyarrow

nanobind Documentation

9.1.1 Mutable reference issue

Another subtle limitation of type casters is that they don’t propagate updates through mutable references. Consider
the following alternative implementation of the double_it function:

void double_it(IntVector &in) {
for (int &value : in)

value *= 2;
}

nanobind can wrap this function without problems, but it won’t behave as expected:

>>> x = [1, 2, 3]
>>> my_ext.double_it(x)
>>> x
[1, 2, 3] # <-- oops, unchanged!

How could this happen? The reason is that type casters convert function arguments and return values once, but
further changes will not automatically propagate across the language barrier because the representations are not
intrinsically linked to each other. This problem is not specific to STL types—for example, the following function
will similarly not update its argument once exposed in Python.

void double_it(int &in) { in *= 2; }

This is because builtin types like int, str, bool, etc., are all handled by type casters.

A simple alternative to propagate updates while retaining the convenience of type casters is to bind a small wrapper
lambda function that returns a tuple with all output arguments. An example:

int foo(int &in) { in *= 2; return std::sqrt(in); }

And the binding code

m.def("foo", [](int i) { int rv = foo(i); return std::make_tuple(rv, i); });

In this case, a type caster (#include <nanobind/stl/tuple.h) must be included to handle the
std::tuple<int, int> return value.

9.2 Option 2: Bindings

Bindings expose C++ types in Python; the ability to create them is the main feature of nanobind. In the list-
of-integer example, they cause Python to interpret std::vector<int> as a new Python type called my_ext.
IntVector.

Example: to switch the previous example to bindings, we first replace the type caster header (nanobind/stl/vector.h)
by its binding variant (nanobind/stl/bind_vector.h) and then invoke the nb::bind_vector<T>() function to create
a new Python type named IntVector within the module m.

#include <nanobind/stl/bind_vector.h>

using IntVector = std::vector<int>;
(continues on next page)

9.2. Option 2: Bindings 44

https://github.com/wjakob/nanobind/blob/master/include/nanobind/stl/vector.h
https://github.com/wjakob/nanobind/blob/master/include/nanobind/stl/bind_vector.h

nanobind Documentation

(continued from previous page)

IntVector double_it(const IntVector &in) { /* .. omitted .. */ }

namespace nb = nanobind;

NB_MODULE(my_ext, m) {
nb::bind_vector<IntVector>(m, "IntVector");
m.def("double_it", &double_it);

}

Any function taking or returning integer vectors will now use the type binding. In the Python session below,
nanobind performs an implicit conversion from the Python list [1, 2, 3] to a my_ext.IntVector before calling
the double_it function.

>>> import my_ext
>>> my_ext.double_it([1, 2, 3])
my_ext.IntVector([2, 4, 6])

>>> my_ext.double_it.__doc__
'double_it(arg: my_ext.IntVector, /) -> my_ext.IntVector'

Let’s go through the implications of using bindings:

Pro: bindings don’t require the costly conversion step when crossing the language boundary. They also support
mutable references, so the issue discussed in the context of type casters does not arise. Sometimes, binding is the
only available option: when a C++ type does not have an equivalent Python type, casting simply does not make
sense.

Con: Creating good bindings that feel natural in Python requires some additional work. We cheated in this example
by relying on the nb::bind_vector<T>() helper function that did all the heavy lifting. Such helpers are currently
only available for a few special cases (vectors, ordered/unordered maps, iterators):

Type Binding helper header
std::vector<..> #include <nanobind/stl/bind_vector.h> (docs)
std::map<..> #include <nanobind/stl/bind_map.h> (docs)
std::unordered_map<..> #include <nanobind/stl/bind_map.h> (docs)
Forward iterators #include <nanobind/make_iterator.h> (docs)
Other types See the previous example on binding custom types.

In general, you will need to write the binding code yourself. The previous section on binding custom types showed
an example of such a type binding.

9.3 Option 3: Wrappers

The last option is only rarely used, but it can be powerful alternative in some cases. nanobind provides wrapper
classes to use Python types within C++. You can think of this as a kind of reverse binding. For example, a Python
list can be accessed through the nb::list type:

This is what the example looks like when expressed using nb::list and nb::int_.

9.3. Option 3: Wrappers 45

nanobind Documentation

#include <nanobind/nanobind.h>

namespace nb = nanobind;

nb::list double_it(nb::list l) {
nb::list result;
for (nb::handle h: l)

result.append(h * nb::int_(2));
return result;

}

NB_MODULE(my_ext, m) {
m.def("double_it", &double_it);

}

The implications of using wrappers are:

Pro: Wrappers require no copying or type conversion. With them, C++ begins to resemble dynamically typed
Python code and can perform highly general operations on Python objects. Wrappers are useful to tap into the
powerful Python software ecosystem (NumPy, Matplotlib, PyTorch, etc).

Con: Functions based on wrappers cannot run without Python. In contrast to option 1 (type casters) and 2 (bind-
ings), we can no longer reuse an existing function and process its arguments and return value to interface the Python
and C++ worlds: the entire function must be rewritten using nanobind-specific wrapper types. Every operation will
translate into a corresponding Python C API call, which means that wrappers aren’t suitable for performance-critical
loops or multithreaded computations.

The following wrappers are available and require no additional include directives: any, bytes, callable,
capsule, dict, ellipsis, handle, handle_t<T>, bool_, int_, float_, iterable, iterator,
list, mapping, module_, object, set, sequence, slice, str, tuple, weakref , type_object,
type_object_t<T>, args, and kwargs.

9.4 Discussion

The choices outlined above are more fine-grained than they may appear. For example, it is possible to use type
casters, bindings, and wrappers to handle multiple arguments of a single function.

They can also be combined within a single function argument. For example, you can type cast a std::vector<T>
containing bindings or wrappers.

In general, we recommend that you use

1. type casters for STL containers, and

2. bindings for other custom types.

If the former turn out to be a performance bottleneck, it is easy to replace them with bindings or wrappers later on.
Wrappers are only rarely useful; you will usually know it when you need them.

9.4. Discussion 46

CHAPTER

TEN

OBJECT OWNERSHIP

Python and C++ don’t manage the lifetime and storage of objects in the same way. Consequently, two questions
arise whenever an object crosses the language barrier:

• Who actually owns this object? C++? Python? Both?!

• Can we safely determine when it is no longer needed?

This is important: we must exclude the possibility that Python destroys an object that is still being used by C++ (or
vice versa).

The previous section introduced three ways of exchanging information between C++ and Python: type casters,
bindings, and wrappers. It is specifically bindings for which these two questions must be answered.

10.1 A problematic example

Consider the following problematic example to see what can go wrong:

#include <nanobind/nanobind.h>
namespace nb = nanobind;

struct Data { };
Data data; // Data global variable & function returning a pointer to it
Data *get_data() { return &data; }

NB_MODULE(my_ext, m) {
nb::class_<Data>(m, "Data");

// KABOOM, calling this function will crash the Python interpreter
m.def("get_data", &get_data);

}

The bound function my_ext.get_data() returns a Python object of type my_ext.Data that wraps the pointer
&data and takes ownership of it.

When Python eventually garbage collects the object, nanobind will try to free the (non-heap-allocated) C++ instance
via operator delete, causing a segmentation fault.

To avoid this problem, we can

1. Provide more information: the problem was that nanobind incorrectly transferred ownership of a C++
instance to the Python side. To fix this, we can add add a return value policy annotation that clarifies what
to do with the return value.

2. Make ownership transfer explicit: C++ types passed via unique pointers (std::unique_ptr<T>) make
the ownership transfer explicit in the type system, which would have revealed the problem in this example.

47

nanobind Documentation

3. Switch to shared ownership: C++ types passed via shared pointers (std::shared_ptr<T>), or which
use intrusive reference counting can be shared by C++ and Python. The whole issue disappears because
ownership transfer is no longer needed.

The remainder of this section goes through each of these options.

10.2 Return value policies

nanobind provides several return value policy annotations that can be passed to module_::def(),
class_::def(), and cpp_function(). The default policy is rv_policy::automatic, which is usually a rea-
sonable default (but not in this case!).

In the problematic example, the policy rv_policy::reference should have been specified explicitly so that the
global instance is only referenced without any implied transfer of ownership, i.e.:

m.def("get_data", &get_data, nb::rv_policy::reference);

On the other hand, this is not the right policy for many other situations, where ignoring ownership could lead to
resource leaks. As a developer using this library, it is important that you familiarize yourself with the different
options below. In particular, the following policies are available:

• rv_policy::take_ownership: Create a thin Python object wrapper around the returned C++ instance
without making a copy and transfer ownership to Python. When the Python wrapper is eventually garbage
collected, nanobind will call the C++ delete operator to free the C++ instance.

In the example below, a function uses this policy to transfer ownership of a heap-allocated C++ instance to
Python:

m.def("make_data", []{ return new Data(); }, nb::rv_policy::take_ownership);

The return value policy declaration could actually have been omitted here because take_ownership is the
default for pointer return values (see automatic).

• rv_policy::copy: Copy-construct a new Python object from the C++ instance. The copy will be owned
by Python, while C++ retains ownership of the original.

In the example below, a function uses this policy to return a reference to a C++ instance. The owner and
lifetime of such a reference may not be clear, so the safest route is to make a copy.

struct A {
B &b() { /* .. unknown code .. */ }

};

nb::class_<A>(m, "A")
.def("b", &A::b, nb::rv_policy::copy);

The return value policy declaration could actually have been omitted here because copy is the default for
lvalue reference return values (see automatic).

• rv_policy::move: Move-construct a new Python object from the C++ instance. The new object will be
owned by Python, while C++ retains ownership of the original (whose contents were likely invalidated by
the move operation).

In the example below, a function uses this policy to return a C++ instance by value. The copy operation
mentioned above would also be safe to use, but move construction has the potential of being significantly
more efficient.

struct A {
B b() { return B(...); }

};
(continues on next page)

10.2. Return value policies 48

nanobind Documentation

(continued from previous page)

nb::class_<A>(m, "A")
.def("b", &A::b, nb::rv_policy::move);

The return value policy declaration could actually have been omitted here because move is the default for
functions that return by value (see automatic).

• rv_policy::reference: Create a thin Python object wrapper around the returned C++ instance without
making a copy, but do not transfer ownership to Python. nanobind will never call the C++ delete operator,
even when the wrapper expires. The C++ side is responsible for destructing the C++ instance.

This return value policy is dangerous and should be used cautiously. Undefined behavior will ensue when
the C++ side deletes the instance while it is still being used by Python. If you need to use this policy,
combine it with a keep_alive function binding annotation to manage the lifetime. Or use the simple and
safe reference_internal alternative described next.

Below is an example use of this return value policy to reference a global variable that does not need ownership
and lifetime management.

Data data; // This is a global variable

m.def("get_data", []{ return &data; }, nb::rv_policy::reference)

• rv_policy::reference_internal: A policy for methods that expose an internal field. The lifetime of
the field must match that of the parent object.

The policy resembles reference in that it creates creates a thin Python object wrapper around the returned
C++ field without making a copy, and without transferring ownership to Python.

Furthermore, it ensures that the instance owning the field (implicit this/self argument) cannot be garbage
collected while an object representing the field is alive.

The example below uses this policy to implement a getter that permits mutable access to an internal field.

struct MyClass {
public:

MyField &field() { return m_field; }

private:
MyField m_field;

};

nb::class_<MyClass>(m, "MyClass")
.def("field", &MyClass::field, nb::rv_policy::reference_internal);

More advanced variations of this scheme are also possible using combinations of reference and the
keep_alive function binding annotation.

• rv_policy::none: This is the most conservative policy: it simply refuses the cast unless the C++ instance
already has a corresponding Python object, in which case the question of ownership becomes moot.

• rv_policy::automatic: This is the default return value policy, which falls back to take_ownership
when the return value is a pointer, move when it is a rvalue reference, and copy when it is a lvalue reference.

• rv_policy::automatic_reference: This policy matches automatic but falls back to referencewhen
the return value is a pointer. It is the default for function arguments when calling Python functions from C++
code via detail::api::operator()(). You probably won’t need to use this policy in your own code.

10.2. Return value policies 49

nanobind Documentation

10.3 Unique pointers

Passing a STL unique pointer embodies an ownership transfer—a return value policy annotation is therefore not
needed. To bind functions that receive or return std::unique_ptr<..>, add the extra include directive

#include <nanobind/stl/unique_ptr.h>

Note: While this this header file technically contains a type caster, it is not affected by their usual limitations
(mandatory copy/conversion, inability to mutate function arguments).

Example: The following example binds two functions that create and consume instances of a C++ type Data via
unique pointers.

#include <nanobind/stl/unique_ptr.h>

namespace nb = nanobind;

NB_MODULE(my_ext, m) {
struct Data { };
nb::class_<Data>(m, "Data");
m.def("create", []() { return std::make_unique<Data>(); });
m.def("consume", [](std::unique_ptr<Data> x) { /* no-op */ });

}

Calling a function taking a unique pointer from Python invalidates the passed Python object. nanobind will refuse
further use of it:

Python 3.11.1 (main, Dec 23 2022, 09:28:24) [Clang 14.0.0 (clang-1400.0.29.202)] on␣
↪darwin

Type "help", "copyright", "credits" or "license" for more information.
>>> import my_ext

>>> x = my_ext.create()
>>> my_ext.consume(x)

>>> my_ext.consume(x)
<stdin>:1: RuntimeWarning: nanobind: attempted to access an uninitialized instance of␣
↪type 'my_ext.Data'!

TypeError: consume(): incompatible function arguments. The following argument types␣
↪are supported:

1. consume(arg: my_ext.Data, /) -> None

Invoked with types: my_ext.Data

We strongly recommend that you replace all use of std::unique_ptr<T> by std::unique_ptr<T,
nb::deleter<T>> in your code. Without the latter type declaration, which references a custom nanobind-provided
deleter nb::deleter<T>, nanobind cannot transfer ownership of objects constructed using nb::init<...> to
C++ and will refuse to do so with an error message. Further detail on this special case can be found in the advanced
section on object ownership.

10.3. Unique pointers 50

nanobind Documentation

10.4 Shared ownership

In a shared ownership model, an object can have multiple owners that each register their claim by holding a ref-
erence. The system keeps track of the total number of references and destroys the object once the count reaches
zero. Passing such an object in a function call shares ownership between the caller and callee. nanobind makes
this behavior seamless so that everything works regardless of whether caller/callee are written in C++ or Python.

10.4.1 Shared pointers

STL shared pointers (std::shared_ptr<T>) allocate a separate control block to keep track of the reference count,
which makes them very general but also slightly less efficient than other alternatives.

nanobind’s support for shared pointers requires an extra include directive:

#include <nanobind/stl/shared_ptr.h>

Note: While this this header file technically contains a type caster, it is not affected by their usual limitations
(mandatory copy/conversion, inability to mutate function arguments).

You don’t need to specify a return value policy annotation when a function returns a shared pointer.

nanobind’s implementation of std::shared_ptr support typically allocates a new shared_ptr control block
each time a Python object must be converted to std::shared_ptr<T>. The new shared_ptr “owns” a refer-
ence to the Python object, and its deleter drops that reference. This has the advantage that the Python portion
of the object will be kept alive by its C++-side references (which is important when implementing C++ virtual
methods in Python), but it can be inefficient when passing the same object back and forth between Python and
C++ many times, and it means that the use_count() method of std::shared_ptr will return a value that
does not capture all uses. Some of these problems can be mitigated by modifying T so that it inherits from
std::enable_shared_from_this<T>. See the advanced section on object ownership for more details on the
implementation.

nanobind has limited support for objects that inherit from std::enable_shared_from_this<T> to allow safe
conversion of raw pointers to shared pointers. The safest way to deal with these objects is to always use
std::make_shared<T>(...) when constructing them in C++, and always pass them across the Python/C++
boundary wrapped in an explicit std::shared_ptr<T>. If you do this, then there shouldn’t be any surprises. If
you will be passing raw T* pointers around, then read the advanced section on object ownership for additional
caveats.

10.4.2 Intrusive reference counting

Intrusive reference counting is the most flexible and efficient way of handling shared ownership. The main downside
is that you must adapt the base class of your object hierarchy to the needs of nanobind.

The core idea is to define base class (e.g. Object) common to all bound types requiring shared ownership. That
class contains a builtin atomic counter (e.g., m_ref_count) and a Python object pointer (e.g., m_py_object).

class Object {
...
private:

mutable std::atomic<size_t> m_ref_count { 0 };
PyObject *m_py_object = nullptr;

};

The core idea is that such Object instances can either be managed by C++ or Python. In the former case, the
m_ref_count field keeps track of the number of outstanding references. In the latter case, reference counting is
handled by Python, and the m_ref_count field remains unused.

10.4. Shared ownership 51

nanobind Documentation

This is actually little wasteful—nanobind therefore ships with a more efficient reference counter sample implemen-
tation that supports both use cases while requiring only sizeof(void*) bytes of storage:

#include <nanobind/intrusive/counter.h>

class Object {
...
private:

intrusive_counter m_ref_count;
};

Please read the dedicated section on intrusive reference counting for more details on how to set this up.

10.4. Shared ownership 52

CHAPTER

ELEVEN

FUNCTIONS

11.1 Binding annotations

Besides keyword and default arguments, docstrings, and return value policies, other function binding annotations
can be specified to achieve different goals as described below.

11.2 Default arguments revisited

A noteworthy point about the previously discussed way of specifying default arguments is that nanobind immedi-
ately converts them into Python objects. Consider the following example:

nb::class_<MyClass>(m, "MyClass")
.def("f", &MyClass::f, "value"_a = SomeType(123));

nanobind must be set up to deal with values of the type SomeType (via a prior instantiation of
nb::class_<SomeType>), or an exception will be thrown.

The “preview” of the default argument in the function signature is generated using the object’s __str__ method.
If not available, the signature may not be very helpful, e.g.:

>> help(my_ext.MyClass)

class MyClass(builtins.object)
| Methods defined here:
....
| f(...)
| f(self, value: my_ext.SomeType = <my_ext.SomeType object at 0x1004d7230>) ->␣
↪None

In such cases, you can either refine the implementation of the type in question or manually override how nanobind
renders the default value using the .sig("string") method :

nb::class_<MyClass>(m, "MyClass")
.def("f", &MyClass::f, "value"_a.sig("SomeType(123)") = SomeType(123));

53

nanobind Documentation

11.3 Implicit conversions, and how to suppress them

Consider the following function taking a floating point value as input:

m.def("double", [](float x) { return 2.f * x; });

We can call this function using a Python float, but an int works just as well:

>>> my_ext.double(2)
4.0

nanobind performed a so-called implicit conversion for convenience. The same mechanism generalizes to custom
types defining a nb::init_implicit<T>()-style constructor:

nb::class_<A>(m, "A")
// Following this line, nanobind will automatically convert 'B' -> 'A' if needed
.def(nb::init_implicit());

This behavior is not always desirable—sometimes, it is better to give up or try another function overload. To achieve
this behavior, use the .noconvert()method of the nb::arg annotation to mark the argument as non-converting.
An example:

m.def("double", [](float x) { return 2.f * x; }, nb::arg("x").noconvert());

The same experiment now fails with a TypeError:

>>> my_ext.double(2)
TypeError: double(): incompatible function arguments. The following ⤦
argument types are supported:

1. double(x: float) -> float

Invoked with types: int

You may, of course, combine this with the _a shorthand notation (see the section on keyword arguments) or specify
unnamed non-converting arguments using nb::arg().noconvert().

Note: The number of nb::arg annotations must match the argument count of the function. To enable no-convert
behaviour for just one of several arguments, you will need to specify nb::arg().noconvert() for that argument,
and nb::arg() for the remaining ones.

11.4 None arguments

A common design pattern in C/C++ entails passing nullptr to pointer-typed arguments to indicate a missing
value. Since nanobind cannot know whether a function uses such a convention, it refuses conversions from None
to nullptr by default. For example, consider the following binding code:

struct Dog { };
const char *bark(Dog *dog) {

return dog != nullptr ? "woof!" : "(no dog)";
}

NB_MODULE(my_ext, m) {
nb::class_<Dog>(m, "Dog")

.def(nb::init<>());
(continues on next page)

11.3. Implicit conversions, and how to suppress them 54

nanobind Documentation

(continued from previous page)

m.def("bark", &bark);
}

Calling the function with None raises an exception:

>>> my_ext.bark(my_ext.Dog())
'woof!'
>>> my_ext.bark(None)
TypeError: bark(): incompatible function arguments. The following ⤦
argument types are supported:

1. bark(arg: my_ext.Dog, /) -> str

To switch to a more permissive behavior, call the .none() method of the nb::arg annotation:

m.def("bark", &bark, nb::arg("dog").none());

With this change, the function accepts None, and its signature also changes to reflect this fact.

>>> my_ext.bark(None)
'(no dog)'

>>> my_ext.bark.__doc__
'bark(dog: Optional[my_ext.Dog]) -> str'

You may also specify a None default argument value, in which case the annotation can be omitted:

m.def("bark", &bark, nb::arg("dog") = nb::none());

Note that passing values by pointer (including null pointers) is only supported for bound types. Type casters and
wrappers cannot be used in such cases and will produce compile-time errors.

Alternatively, you can also use std::optional<T> to pass an optional argument by value. To use it, you must
include the header file associated needed by its type caster:

#include <nanobind/stl/optional.h>

NB_MODULE(my_ext, m) {
m.def("bark", [](std::optional<Dog> d) { ... }, nb::arg("dog") = nb::none());

}

11.5 Overload resolution order

nanobind relies on a two-pass scheme to determine the right implementation when a bound function or method
with multiple overloads is called from Python.

The first pass attempts to call each overload while disabling implicit argument conversion—it’s as if every argument
had a matching nb::arg().noconvert() annotation as described above. The process terminates successfully
when nanobind finds an overload that is compatible with the provided arguments.

If the first pass fails, a second pass retries all overloads while enabling implicit argument conversion. If the second
pass also fails, the function dispatcher raises a TypeError.

Within each pass, nanobind tries overloads in the order in which they were registered. Consequently, it prefers an
overload that does not require implicit conversion to one that does, but otherwise prefers earlier-defined overloads
to later-defined ones. Within the second pass, the precise number of implicit conversions needed does not influence
the order.

11.5. Overload resolution order 55

nanobind Documentation

The special exception nb::next_overload can also influence overload resolution. Raising this exception from
an overloaded function causes it to be skipped, and overload resolution resumes. This can be helpful in complex
situations where the value of a parameter must be inspected to see if a particular overload is eligible.

11.6 Accepting *args and **kwargs

Python supports functions that accept an arbitrary number of positional and keyword arguments:

def generic(*args, **kwargs):
... # do something with args and kwargs

Such functions can also be created using nanobind:

void generic(nb::args args, nb::kwargs kwargs) {
for (auto v: args)

nb::print(nb::str("Positional: {}").format(v));
for (auto kv: kwargs)

nb::print(nb::str("Keyword: {} -> {}").format(kv.first, kv.second));
}

// Binding code
m.def("generic", &generic);

The class nb::args derives from nb::tuple and nb::kwargs derives from nb::dict.

You may also use them individually or even combine them with ordinary parameters. Note that nb::kwargs must
be the last parameter if it is specified, and any parameters after nb::args are implicitly keyword-only, just like in
regular Python.

11.7 Expanding *args and **kwargs

Conversely, nanobind can also expand standard containers to add positional and keyword arguments to a Python
call. The example below shows how to do this using the wrapper types nb::object, nb::callable, nb::list,
nb::dict

nb::object my_call(nb::callable callable) {
nb::list list;
nb::dict dict;

list.append("positional");
dict["keyword"] = "value";

return callable(1, *list, **dict);
}

NB_MODULE(my_ext, m) {
m.def("my_call", &my_call);

}

Here is an example use of the above extension in Python:

>>> def x(*args, **kwargs):
... print(args)
... print(kwargs)
...

(continues on next page)

11.6. Accepting *args and **kwargs 56

nanobind Documentation

(continued from previous page)

>>> import my_ext
>>> my_ext.my_call(x)
(1, 'positional')
{'keyword': 'value'}

11.8 Keyword-only parameters

Python supports keyword-only parameters; these can’t be filled positionally, thus requiring the caller to specify
their name. They can be used to enforce more clarity at call sites if a function has multiple paramaters that could
be confused with each other, or to accept named options alongside variadic *args.

def example(val: int, *, check: bool) -> None:
val can be passed either way; check must be given as a keyword arg
pass

example(val=42, check=True) # good
example(check=False, val=5) # good
example(100, check=True) # good
example(200, False) # TypeError:

example() takes 1 positional argument but 2 were given

def munge(*args: int, invert: bool = False) -> int:
return sum(args) * (-1 if invert else 1)

munge(1, 2, 3) # 6
munge(4, 5, 6, invert=True) # -15

nanobind provides a nb::kw_only() annotation that allows you to produce bindings that behave like these exam-
ples. It must be placed before the nb::arg() annotation for the first keyword-only parameter; you can think of it
as equivalent to the bare *, in a Python function signature. For example, the above examples could be written in
C++ as:

void example(int val, bool check);
int munge(nb::args args, bool invert);

m.def("example", &example,
nb::arg("val"), nb::kw_only(), nb::arg("check"));

// Parameters after *args are implicitly keyword-only:
m.def("munge", &munge,

nb::arg("args"), nb::arg("invert"));

// But you can be explicit about it too, as long as you put the
// kw_only annotation in the correct position:
m.def("munge", &munge,

nb::arg("args"), nb::kw_only(), nb::arg("invert"));

Note: nanobind does not support the pos_only() argument annotation provided by pybind11, which marks the
parameters before it as positional-only. However, a parameter can be made effectively positional-only by giving it
no name (using an empty nb::arg() specifier).

11.8. Keyword-only parameters 57

nanobind Documentation

11.9 Function templates

Consider the following function signature with a template parameter:

template <typename T> void process(T t);

A template must be instantiated with concrete types to be usable, which is a compile-time operation. The generic
version version therefore cannot be used in bindings:

m.def("process", &process); // <-- this will not compile

You must bind each instantiation separately, either as a single function with overloads, or as separately named
functions.

// Option 1:
m.def("process", &process<int>);
m.def("process", &process<std::string>);

// Option 2:
m.def("process_int", &process<int>);
m.def("process_string", &process<std::string>);

11.10 Lifetime annotations

The nb::keep_alive<Nurse, Patient>() annotation indicates that the argument with index Patient should
be kept alive at least until the argument with index Nurse is freed by the garbage collector.

The example below applies the annotation to a hypothetical operation that appends an entry to a log data structure.

nb::class_<Log>(m, "Log")
.def("append",

[](Log &log, Entry *entry) -> void { ... },
nb::keep_alive<1, 2>());

Here, Nurse = 1 refers to the log argument, while Patient = 2 refers to entry. Setting Nurse/Patient =
0 would select the function return value (here, the function doesn’t return anything, so 0 is not a valid choice).

The example uses the annotation to tie the lifetime of the entry to that of log. Without it, Python could po-
tentially delete entry before log, which would be problematic if the log.append() operation causes log to
reference entry through a pointer address instead of making a copy. Whether or not this is a good design is an-
other question (for example, shared ownership via std::shared_ptr<T> or intrusive reference counting would
avoid the problem altogether).

See the definition of nb::keep_alive for further discussion and limitations of this method.

11.11 Call guards

The nb::call_guard<T>() annotation allows any scope guard T to be placed around the function call. For
example, this definition:

m.def("foo", foo, nb::call_guard<T>());

is equivalent to the following pseudocode:

11.9. Function templates 58

nanobind Documentation

m.def("foo", [](args...) {
T scope_guard;
return foo(args...); // forwarded arguments

});

The only requirement is that T is default-constructible, but otherwise any scope guard will work. This feature
is often combined with nb::gil_scoped_release to release the Python global interpreter lock (GIL) during a
long-running C++ routine to permit parallel execution.

Multiple guards should be specified as nb::call_guard<T1, T2, T3...>. Construction occurs left to right,
while destruction occurs in reverse.

11.12 Higher-order functions

The C++11 standard introduced lambda functions and the generic polymorphic function wrapper
std::function<>, which enable powerful new ways of working with functions. Lambda functions come
in two flavors: stateless lambda function resemble classic function pointers that link to an anonymous piece of
code, while stateful lambda functions additionally depend on captured variables that are stored in an anonymous
lambda closure object.

Here is a simple example of a C++ function that takes an arbitrary function (stateful or stateless) with signature
int -> int as an argument and runs it with the value 10.

int func_arg(const std::function<int(int)> &f) {
return f(10);

}

The example below is more involved: it takes a function of signature int -> int and returns another function of
the same kind. The return value is a stateful lambda function, which stores the value f in the capture object and
adds 1 to its return value upon execution.

std::function<int(int)> func_ret(const std::function<int(int)> &f) {
return [f](int i) {

return f(i) + 1;
};

}

This example demonstrates using python named parameters in C++ callbacks which requires use of the
nb::cpp_function conversion function. Usage is similar to defining methods of classes:

nb::object func_cpp() {
return nb::cpp_function([](int i) { return i+1; },

nb::arg("number"));
}

After including the extra header file nanobind/stl/function.h, it is almost trivial to generate binding code for
all of these functions.

#include <nanobind/stl/function.h>

NB_MODULE(my_ext, m) {
m.def("func_arg", &func_arg);
m.def("func_ret", &func_ret);
m.def("func_cpp", &func_cpp);

}

The following interactive session shows how to call them from Python.

11.12. Higher-order functions 59

nanobind Documentation

Python 3.11.1 (main, Dec 23 2022, 09:28:24) [Clang 14.0.0 (clang-1400.0.29.202)] on␣
↪darwin

Type "help", "copyright", "credits" or "license" for more information.
>>> import my_ext
>>> def square(i):
... return i*i
...
>>> my_ext.func_arg(square)
100
>>> square_plus_1 = my_ext.func_ret(square)
>>> square_plus_1(4)
17
>>> plus_1 = my_ext.func_cpp()
>>> plus_1.__doc__
'<anonymous>(number: int) -> int'
>>> plus_1(number=43)
44

Note: This functionality is very useful when generating bindings for callbacks in C++ libraries (e.g. GUI libraries,
asynchronous networking libraries, etc.).

11.12. Higher-order functions 60

CHAPTER

TWELVE

CLASSES

The material below builds on the section on binding custom types and reviews advanced scenarios involving object-
oriented code.

12.1 Frequently used

Click on the following nb::class_<..>::def_* members for examples on how to bind various different kinds
of methods, fields, etc.

Type method
Methods & constructors .def()
Fields .def_ro(), .def_rw()
Properties .def_prop_ro(), .def_prop_rw()
Static methods .def_static()
Static fields .def_ro_static(), .def_rw_static()
Static properties .def_prop_ro_static(), .def_prop_rw_static()

12.2 Subclasses

Consider the following two data structures with an inheritance relationship:

struct Pet {
std::string name;

};

struct Dog : Pet {
std::string bark() const { return name + ": woof!"; }

};

To indicate the inheritance relationship to nanobind, specify the C++ base class as an extra template parameter of
nb::class_<..>:

#include <nanobind/stl/string.h>

NB_MODULE(my_ext, m) {
nb::class_<Pet>(m, "Pet")

.def(nb::init<const std::string &>())

.def_rw("name", &Pet::name);

nb::class_<Dog, Pet /* <- C++ parent type */>(m, "Dog")
.def(nb::init<const std::string &>())

(continues on next page)

61

nanobind Documentation

(continued from previous page)

.def("bark", &Dog::bark);
}

Alternatively, you can also pass the type object as an ordinary parameter.

auto pet = nb::class_<Pet>(m, "Pet")
.def(nb::init<const std::string &>())
.def_rw("name", &Pet::name);

nb::class_<Dog>(m, "Dog", pet /* <- Parent type object */)
.def(nb::init<const std::string &>())
.def("bark", &Dog::bark);

Instances expose fields and methods of both types as expected:

>>> d = my_ext.Dog("Molly")
>>> d.name
'Molly'
>>> d.bark()
'Molly: woof!'

12.3 Automatic downcasting

nanobind obeys type signature when returning regular non-polymorphic C++ objects: building on the previous
example, consider the following function that returns a Dog object as a Pet base pointer.

m.def("pet_store", []() { return (Pet *) new Dog{"Molly"}; });

nanobind cannot safely determine that this is in fact an instance of the Dog subclass. Consequently, only fields and
methods of the base type remain accessible:

>>> p = my_ext.pet_store()
>>> type(p)
<class 'my_ext.Pet'>
>>> p.bark()
AttributeError: 'Pet' object has no attribute 'bark'

In C++, a type is only considered polymorphic if it (or one of its base classes) has at least one virtual function.
Let’s add a virtual default destructor to make Pet and its subtypes polymorphic.

struct Pet {
virtual ~Pet() = default;
std::string name;

};

With this change, nanobind is able to inspect the returned C++ instance’s virtual table and infer that it can be
represented by a more specialized Python object of type my_ext.Dog.

>>> p = my_ext.pet_store()
>>> type(p)
<class 'my_ext.Dog'>
>>> p.bark()
'Molly: woof!'

12.3. Automatic downcasting 62

https://en.wikipedia.org/wiki/Dynamic_dispatch
https://en.wikipedia.org/wiki/Virtual_method_table

nanobind Documentation

Note: Automatic downcasting of polymorphic instances is only supported when the subtype has been registered
using nb::class_<..>. Otherwise, the return type listed in the function signature takes precedence.

12.4 Overloaded methods

Sometimes there are several overloaded C++ methods with the same name taking different kinds of input arguments:

struct Pet {
Pet(const std::string &name, int age) : name(name), age(age) { }

void set(int age_) { age = age_; }
void set(const std::string &name_) { name = name_; }

std::string name;
int age;

};

Attempting to bind Pet::setwill cause an error since the compiler does not know which method the user intended
to select. We can disambiguate by casting them to function pointers. Binding multiple functions to the same Python
name automatically creates a chain of function overloads that will be tried in sequence.

nb::class_<Pet>(m, "Pet")
.def(nb::init<const std::string &, int>())
.def("set", nb::overload_cast<int>(&Pet::set), "Set the pet's age")
.def("set", nb::overload_cast<const std::string &>(&Pet::set), "Set the pet's name

↪");

Here, nb::overload_cast only requires the parameter types to be specified, and it deduces the return type.

Note: In cases where a function overloads by const-ness, an additional nb::const_ parameter is needed to
select the right overload, e.g., nb::overload_cast<int>(&Pet::get, nb::const_).

To define overloaded constructors, simply declare one after the other using the normal .def(nb::init<...>())
syntax.

The overload signatures are also visible in the method’s docstring:

>>> help(my_ext.Pet)
class Pet(builtins.object)
| Methods defined here:
|
| __init__(...)
| __init__(self, arg0: str, arg1: int, /) -> None
|
| set(...)
| set(self, arg: int, /) -> None
| set(self, arg: str, /) -> None
|
| Overloaded function.
|
| 1. ``set(self, arg: int, /) -> None``
|
| Set the pet's age

(continues on next page)

12.4. Overloaded methods 63

nanobind Documentation

(continued from previous page)

|
| 2. ``set(self, arg: str, /) -> None``
|
| Set the pet's name

The format of the docstring with a leading overload list followed by a repeated list with details is designed to be
compatible with the Sphinx documentation generator.

12.5 Enumerations and internal types

Let’s now suppose that the example class contains internal types like enumerations, e.g.:

struct Pet {
enum Kind {

Dog = 0,
Cat

};

struct Attributes {
float age = 0;

};

Pet(const std::string &name, Kind type) : name(name), type(type) { }

std::string name;
Kind type;
Attributes attr;

};

The binding code for this example looks as follows:

nb::class_<Pet> pet(m, "Pet");

pet.def(nb::init<const std::string &, Pet::Kind>())
.def_rw("name", &Pet::name)
.def_rw("type", &Pet::type)
.def_rw("attr", &Pet::attr);

nb::enum_<Pet::Kind>(pet, "Kind")
.value("Dog", Pet::Kind::Dog)
.value("Cat", Pet::Kind::Cat)
.export_values();

nb::class_<Pet::Attributes>(pet, "Attributes")
.def(nb::init<>())
.def_rw("age", &Pet::Attributes::age);

To ensure that the nested types Kind and Attributes are created within the scope of Pet, the pet type object is
passed as the scope argument of the subsequent nb::enum_<T> and nb::class_<T> binding declarations. The
.export_values() function exports the enumeration entries into the parent scope, which should be skipped for
newer C++11-style strongly typed enumerations.

>>> from my_ext import Pet
>>> p = Pet("Lucy", Pet.Cat)
>>> p.attr.age = 3

(continues on next page)

12.5. Enumerations and internal types 64

https://www.sphinx-doc.org/en/master/

nanobind Documentation

(continued from previous page)

>>> p.type
my_ext.Kind.Cat
>>> p.type.__name__
'Cat'
>>> int(p.type)
1

Note: When the annotation nb::is_arithmetic() is passed to nb::enum_<T>, the resulting Python type will
support arithmetic and bit-level operations like comparisons, and, or, xor, negation, etc.

nb::enum_<Pet::Kind>(pet, "Kind", nb::is_arithmetic())
...

By default, these are omitted.

12.6 Dynamic attributes

Native Python classes can pick up new attributes dynamically:

>>> class Pet:
... name = "Molly"
...
>>> p = Pet()
>>> p.name = "Charly" # overwrite existing
>>> p.age = 2 # dynamically add a new attribute

By default, classes exported from C++ do not support this and the only writable attributes are the ones explicitly
defined using class_::def_rw() or class_::def_prop_rw().

nb::class_<Pet>(m, "Pet")
.def(nb::init<>())
.def_rw("name", &Pet::name);

Trying to set any other attribute results in an error:

>>> p = my_ext.Pet()
>>> p.name = "Charly" # OK, attribute defined in C++
>>> p.age = 2 # fail
AttributeError: 'Pet' object has no attribute 'age'

To enable dynamic attributes for C++ classes, the nb::dynamic_attr tag must be added to the nb::class_
constructor:

nb::class_<Pet>(m, "Pet", nb::dynamic_attr())
.def(nb::init<>())
.def_rw("name", &Pet::name);

Now everything works as expected:

>>> p = my_ext.Pet()
>>> p.name = "Charly" # OK, overwrite value in C++
>>> p.age = 2 # OK, dynamically add a new attribute

12.6. Dynamic attributes 65

nanobind Documentation

Note that there is a small runtime cost for a class with dynamic attributes. Not only because of the addition of
an instance dictionary, but also because of more expensive garbage collection tracking which must be activated to
resolve possible circular references. Native Python classes incur this same cost by default, so this is not anything
to worry about. By default, nanobind classes are more efficient than native Python classes. Enabling dynamic
attributes just brings them on par.

12.7 Weak references

By default, nanobind instances cannot be referenced via Python’s weakref class, and attempting to do so will raise
an exception.

To support this, add the nb::is_weak_referenceable tag to the nb::class_ constructor. Note that this will
increase the size of every instance by sizeof(void*) due to the need to store a weak reference list.

nb::class_<Pet>(m, "Pet", nb::is_weak_referenceable());

12.8 Extending C++ classes in Python

Bound C++ types can be extended within Python, which is helpful to dynamically extend compiled code with
further fields and other functionality. Bind classes with the is_final annotation to forbid subclassing.

Consider the following example bindings of a Dog and DogHouse class.

#include <nanobind/stl/string.h>

namespace nb = nanobind;

struct Dog {
std::string name;
std::string bark() const { return name + ": woof!"; }

};

struct DogHouse {
Dog dog;

};

NB_MODULE(my_ext, m) {
nb::class_<Dog>(m, "Dog")

.def(nb::init<const std::string &>())

.def("bark", &Dog::bark)

.def_rw("name", &Dog::name);

nb::class_<DogHouse>(m, "DogHouse")
.def(nb::init<Dog>())
.def_rw("dog", &DogHouse::dog);

}

The following Python snippet creates a new GuardDog type that extends Dog with an .alarm() method.

>>> import my_ext
>>> class GuardDog(my_ext.Dog):
... def alarm(self, count = 3):
... for i in range(count):
... print(self.bark())
...

(continues on next page)

12.7. Weak references 66

nanobind Documentation

(continued from previous page)

>>> gd = GuardDog("Max")
>>> gd.alarm()
Max: woof!
Max: woof!
Max: woof!

This Python subclass is best thought of as a “rich wrapper” around an existing C++ base object. By default, that
wrapper will disappear when nanobind makes a copy or transfers ownership to C++.

>>> d = my_ext.DogHouse()
>>> d.dog = gd
>>> d.dog.alarm()
AttributeError: 'Dog' object has no attribute 'alarm'

To preserve it, adopt a shared ownership model using shared pointers or intrusive reference counting. For example,
updating the code as follows fixes the problem:

#include <nanobind/stl/shared_ptr.h>

struct DogHouse {
std::shared_ptr<Dog> dog;

};

>>> d = my_ext.DogHouse()
>>> d.dog = gd
>>> d.dog.alarm()
Max: woof!
Max: woof!
Max: woof!

12.9 Overriding virtual functions in Python

Building on the previous example on inheriting C++ types in Python, let’s investigate how a C++ virtual function
can be overridden in Python. In the code below, the virtual method bark() is called by a global alarm() function
(now written in C++).

#include <iostream>

struct Dog {
std::string name;
Dog(const std::string &name) : name(name) { }
virtual std::string bark() const { return name + ": woof!"; }

};

void alarm(Dog *dog, size_t count = 3) {
for (size_t i = 0; i < count; ++i)

std::cout << dog->bark() << std::endl;
}

Normally, the binding code would look as follows:

#include <nanobind/stl/string.h>

namespace nb = nanobind;
(continues on next page)

12.9. Overriding virtual functions in Python 67

nanobind Documentation

(continued from previous page)

using namespace nb::literals;

NB_MODULE(my_ext, m) {
nb::class_<Dog>(m, "Dog")

.def(nb::init<const std::string &>())

.def("bark", &Dog::bark)

.def_rw("name", &Dog::name);

m.def("alarm", &alarm, "dog"_a, "count"_a = 3);
}

However, this don’t work as expected. We can subclass and override without problems, but virtual function calls
originating from C++ aren’t being propagated to Python:

>>> class ShihTzu(my_ext.Dog):
... def bark(self):
... return self.name + ": yip!"
...

>>> dog = ShihTzu("Mr. Fluffles")

>>> dog.bark()
Mr. Fluffles: yip!

>>> my_ext.alarm(dog)
Mr. Fluffles: woof! # <-- oops, alarm() is calling the base implementation
Mr. Fluffles: woof!
Mr. Fluffles: woof!

To fix this behavior, you must implement a trampoline class. A trampoline has the sole purpose of capturing virtual
function calls in C++ and forwarding them to Python.

#include <nanobind/trampoline.h>

struct PyDog : Dog {
NB_TRAMPOLINE(Dog, 1);

std::string bark() const override {
NB_OVERRIDE(bark);

}
};

This involves an additional include directive and the line NB_TRAMPOLINE(Dog, 1) to mark the class as a trampo-
line for the Dog base type. The count (1) denotes to the total number of virtual method slots that can be overridden
within Python.

Note: The number of virtual method slots is used to preallocate memory. Trampoline declarations with an
insufficient size may eventually trigger a Python RuntimeError exception with a descriptive label, e.g.:

nanobind::detail::get_trampoline('PyDog::bark()'): the trampoline ran out of
slots (you will need to increase the value provided to the NB_TRAMPOLINE() macro)

The macro NB_OVERRIDE(bark) intercepts the virtual function call, checks if a Python override exists, and for-
wards the call in that case. If no override was found, it falls back to the base class implementation. You will need
to replicate this pattern for every method that should support overriding in Python.

12.9. Overriding virtual functions in Python 68

nanobind Documentation

The macro accepts an variable argument list to pass additional parameters. For example, suppose that the virtual
function bark() had an additional int volume parameter—in that case, the syntax would need to be adapted as
follows:

std::string bark(int volume) const override {
NB_OVERRIDE(bark, volume);

}

The macro NB_OVERRIDE_PURE() should be used for pure virtual functions, and NB_OVERRIDE() should
be used for functions which have a default implementation. There are also two alternate macros
NB_OVERRIDE_PURE_NAME() and NB_OVERRIDE_NAME()which take a string as first argument to specify the name
of function in Python. This is useful when the C++ and Python versions of the function have different names (e.g.,
operator+ vs __add__).

The binding code needs a tiny adaptation (highlighted) to inform nanobind of the trampoline that will be used
whenever Python code extends the C++ class.

nb::class_<Dog, PyDog /* <-- trampoline */>(m, "Dog")

If the nb::class_<..> declaration also specifies a base class, you may specify it and the trampoline in either
order. Also, note that binding declarations should be made against the actual class, not the trampoline:

nb::class_<Dog, PyDog>(m, "Dog")
.def(nb::init<const std::string &>())
.def("bark", &PyDog::bark); /* <--- THIS IS WRONG, use &Dog::bark */

With the trampoline in place, our example works as expected:

>>> my_ext.alarm(dog)
Mr. Fluffles: yip!
Mr. Fluffles: yip!
Mr. Fluffles: yip!

The following special case needs to be mentioned: you may not implement a Python trampoline for a method that
returns a reference or pointer to a type requiring type casting. For example, attempting to expose a hypothetical
virtual method const std::string &get_name() const as follows

const std::string &get_name() const override {
NB_OVERRIDE(get_name);

}

will fail with a static assertion failure:

include/nanobind/nb_cast.h:352:13: error: static_assert failed due to requirement '...
↪'

"nanobind::cast(): cannot return a reference to a temporary."

This is not a fluke. The Python would return a str object that nanobind can easily type-cast into a temporary
std::string instance. However, when the virtual function call returns on the C++ side, that temporary will
already have expired. There isn’t a good solution to this problem, and nanobind therefore simply refuses to do it.
You will need to change your approach by either using bindings instead of type casters or changing your virtual
method interfaces to return by value.

12.9. Overriding virtual functions in Python 69

nanobind Documentation

12.10 Operator overloading

Suppose that we’re given the following Vector2 class with a vector addition and scalar multiplication operation,
all implemented using overloaded operators in C++.

class Vector2 {
public:

Vector2(float x, float y) : x(x), y(y) { }

Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
Vector2 operator-() const { return Vector2(-x, -y); }
Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
Vector2& operator*=(float v) { x *= v; y *= v; return *this; }

friend Vector2 operator*(float f, const Vector2 &v) {
return Vector2(f * v.x, f * v.y);

}

std::string to_string() const {
return "[" + std::to_string(x) + ", " + std::to_string(y) + "]";

}
private:

float x, y;
};

The following snippet shows how the above operators can be conveniently exposed to Python.

#include <nanobind/operators.h>

NB_MODULE(my_ext, m) {
nb::class_<Vector2>(m, "Vector2")

.def(nb::init<float, float>())

.def(nb::self + nb::self)

.def(nb::self += nb::self)

.def(nb::self *= float())

.def(float() * nb::self)

.def(nb::self * float())

.def(-nb::self)

.def("__repr__", &Vector2::to_string);
}

Note that a line involving nb::self like

.def(nb::self * float())

is really just short hand notation for

.def("__mul__", [](const Vector2 &a, float b) {
return a * b;

}, nb::is_operator())

This can be useful for exposing additional operators that don’t exist on the C++ side, or to perform other types of
customization. The nb::is_operator() flag marker is needed to inform nanobind that this is an operator, which
returns NotImplemented when invoked with incompatible arguments rather than throwing a type error.

When binding in-place operators such as operator+=, and when their implementation is guaranteed to end with
return *this, it is recommended that you set a return value policy of rv_policy::none, i.e.,

12.10. Operator overloading 70

nanobind Documentation

.def(nb::self += nb::self, nb::rv_policy::none)

Otherwise, the function binding will return a new copy of the object, which is usually not desired.

12.11 Binding protected member functions

It’s normally not possible to expose protected member functions to Python:

class A {
protected:

int foo() const { return 42; }
};

nb::class_<A>(m, "A")
.def("foo", &A::foo); // error: 'foo' is a protected member of 'A'

On one hand, this is good because non-public members aren’t meant to be accessed from the outside. But we
may want to make use of protected functions in derived Python classes.

The following pattern makes this possible:

class A {
protected:

int foo() const { return 42; }
};

class Publicist : public A { // helper type for exposing protected functions
public:

using A::foo; // inherited with different access modifier
};

nb::class_<A>(m, "A") // bind the primary class
.def("foo", &Publicist::foo); // expose protected methods via the publicist

This works because &Publicist::foo is exactly the same function as &A::foo (same signature and address),
just with a different access modifier. The only purpose of the Publicist helper class is to make the function name
public.

If the intent is to expose protected virtual functions which can be overridden in Python, the publicist pattern
can be combined with the previously described trampoline:

class A {
public:

virtual ~A() = default;

protected:
virtual int foo() const { return 42; }

};

class Trampoline : public A {
public:

NB_TRAMPOLINE(A, 1);
int foo() const override { NB_OVERRIDE(foo); }

};

class Publicist : public A {
(continues on next page)

12.11. Binding protected member functions 71

nanobind Documentation

(continued from previous page)

public:
using A::foo;

};

nb::class_<A, Trampoline>(m, "A") // <-- `Trampoline` here
.def("foo", &Publicist::foo); // <-- `Publicist` here, not `Trampoline`!

12.12 Binding classes with template parameters

nanobind can also wrap classes that have template parameters. Consider these classes:

struct Cat {};
struct Dog {};

template <typename PetType> struct PetHouse {
PetHouse(PetType& pet);
PetType& get();

};

C++ templates may only be instantiated at compile time, so nanobind can only wrap instantiated templated classes.
You cannot wrap a non-instantiated template:

// BROKEN (this will not compile)
nb::class_<PetHouse>(m, "PetHouse");

.def("get", &PetHouse::get);

You must explicitly specify each template/type combination that you want to wrap separately.

// ok
nb::class_<PetHouse<Cat>>(m, "CatHouse")

.def("get", &PetHouse<Cat>::get);

// ok
nb::class_<PetHouse<Dog>>(m, "DogHouse")

.def("get", &PetHouse<Dog>::get);

If your class methods have template parameters you can wrap those as well, but once again each instantiation must
be explicitly specified:

typename <typename T> struct MyClass {
template <typename V> T fn(V v);

};

nb::class_<MyClass<int>>(m, "MyClassT")
.def("fn", &MyClass<int>::fn<std::string>);

12.12. Binding classes with template parameters 72

nanobind Documentation

12.13 Tag-based polymorphism

The section on automatic downcasting explained how nanobind can infer the type of polymorphic C++ objects
at runtime. It can be desirable to extend this automatic downcasting behavior to non-polymorphic classes, for
example to support tag-based polymorphism. In this case, instances expose a method or field to identify their type.

For example, consider the following class hierarchy where Pet::kind serves this purpose:

#include <nanobind/nanobind.h>

namespace nb = nanobind;

enum class PetKind { Cat, Dog };

struct Pet { const PetKind kind; };
struct Dog : Pet { Dog() : Pet{PetKind::Dog} { } };
struct Cat : Pet { Cat() : Pet{PetKind::Cat} { } };

namespace nb = nanobind;

NB_MODULE(my_ext, m) {
nb::class_<Pet>(m, "Pet");
nb::class_<Dog>(m, "Dog");
nb::class_<Cat>(m, "Cat");

nb::enum_<PetKind>(m, "PetKind")
.value("Cat", PetKind::Cat)
.value("Dog", PetKind::Dog);

m.def("make_pet", [](PetKind kind) -> Pet* {
switch (kind) {

case PetKind::Dog: return new Dog();
case PetKind::Cat: return new Cat();

}
});

}

This code initially doesn’t work as expected (the make_pet function binding always creates instances of the Pet
base class).

>>> my_ext.make_pet(my_ext.PetKind.Cat)
<my_ext.Pet object at 0x10305ee10>

>>> my_ext.make_pet(my_ext.PetKind.Dog)
<my_ext.Pet object at 0x10328e530>

To fix this, partially specialize the type_hook class to provide the type_hook<T>::get() method:

namespace nanobind::detail {
template <> struct type_hook<Pet> {

static const std::type_info *get(Pet *p) {
if (p) {

switch (p->kind) {
case PetKind::Dog: return &typeid(Dog);
case PetKind::Cat: return &typeid(Cat);

}
}
return &typeid(Pet);

(continues on next page)

12.13. Tag-based polymorphism 73

nanobind Documentation

(continued from previous page)

}
};

} // namespace nanobind::detail

The method will be invoked whenever nanobind needs to convert a C++ pointer of type T* to a Python object. It
should inspect the instance and return a pointer to a suitable RTTI record. With this override, downcasting works
as expected:

>>> my_ext.make_pet(my_ext.PetKind.Cat)
<my_ext.Cat object at 0x104da6e10>

>>> my_ext.make_pet(my_ext.PetKind.Dog)
<my_ext.Dog object at 0x104da6ef0>

12.14 Binding unions

nb::class_<..> can also be used to provide bindings for unions. A basic and useless example:

union Example {
int ival;
double dval;

std::string to_string(size_t active_idx) const {
return active_idx == 1 ? std::to_string(dval) : std::to_string(ival);

}
};
static_assert(sizeof(Example) == sizeof(double));

nb::class_<Example>(m, "Example")
.def_rw("ival", &Example::ival)
.def_rw("dval", &Example::dval)
.def("to_string", &Example::to_string);

>>> u = my_ext.Example()
>>> u.ival = 42
>>> u.to_string(0)
'42'
>>> u.dval = 1.25
>>> u.to_string(1)
'1.250000'

Direct binding of union variant members is only safe if all members of the union are trivially copyable types (as
in this example), but more complex unions can also be supported by binding lambdas or member functions that
enforce the necessary invariants.

This is a low-level feature and should be used with care; even when all members are trivially copyable, reading
from a union member other than the most recently written one produces undefined behavior in C++. Unless you
need to bind an existing API that uses union types, you’re probably better off using std::variant<..>, which
knows what member is active and can thus enforce all the ncessary invariants for you.

12.14. Binding unions 74

https://en.cppreference.com/w/cpp/language/union

nanobind Documentation

12.15 Pickling

To pickle and unpickle objects bound using nanobind, expose the __getstate__ and __setstate__ methods.
They should return and retrieve the internal instance state using representations that themselves support pickling.
The example below, e.g., does this using a tuple.

The __setstate__ method should construct the object in-place analogous to custom __init__-style construc-
tors.

#include <nanobind/stl/tuple.h>

struct Pet {
std::string name;
int age;
Pet(const std::string &name, int age) : name(name), age(age) { }

};

NB_MODULE(my_ext, m) {
nb::class_<Pet>(m, "Pet")
// ...
.def("__getstate__", [](const Pet &pet) { return std::make_tuple(pet.name, pet.

↪age); })
.def("__setstate__", [](Pet &pet, const std::tuple<std::string, int> &state) {

new (&pet) Pet(
std::get<0>(state),
std::get<1>(state)

);
});

}

12.16 Customizing Python object creation

Sometimes you might need to bind a class that can’t be constructed in the usual way:

class Pet {
private:
Pet(/* ... */);

public:
static std::unique_ptr<Pet> make(std::string name, int age);
void speak();

};

You can use .def_static() to produce bindings that let you write Pet.make("Fido", 2) in Python, just like
you would write Pet::make("Fido", 2) in C++. But sometimes it’s nice to provide a more Pythonic interface
than that, like Pet("Fido", 2). To do that, nanobind lets you override __new__.

Since this is a rarely-used feature in Python, let’s recap. Object initialization in Python occurs in two phases:

• the constructor, __new__, allocates memory for the object;

• the initializer, __init__, sets up the object’s initial state.

So far, all the ways we’ve seen of binding C++ constructors (nb::init<..>(), .def("__init__", ...)) pro-
duce Python object initializers. nanobind augments these with its own Python object constructor, which allocates
a Python object that has space in its memory layout for the C++ object to slot in. The __init__ method then fills
in that space by calling a C++ constructor.

This split between __new__ and __init__ has a lot of benefits, including a reduction in unnecessary allocations,
but it does mean that anything created from Python must be able to control where its C++ innards are stored.

12.15. Pickling 75

nanobind Documentation

Sometimes, as with the example of Pet above, that’s not feasible. In such cases, you can go down one level and
override __new__ directly:

nb::class_<Pet>(m, "Pet")
.def(nb::new_(&Pet::make), "name"_a, "age"_a)
.def("speak", &Pet::speak);

Passing nb::new_ to .def() here creates two magic methods on Pet:

• A __new__ that uses the given function to produce a new Pet. It is converted to a Python object in the same
way as the return value of any other function you might write bindings for. In particular, you can pass a
nb::rv_policy as an additional argument to .def() to control how this conversion occurs.

• A __init__ that takes the same arguments as __new__ but performs no operation. This is necessary because
Python automatically calls __init__ on the object returned by __new__ in most cases.

You can provide a lambda as the argument of nb::new_. This is most useful when the lambda returns a pointer or
smart pointer; if it’s returning a value, then .def("__init__", ...)will have better performance. Additionally,
you can chain multiple calls to .def(nb::new_(...)) in order to create an overload set. The following example
demonstrates both of these capabilities:

nb::class_<Pet>(m, "Pet")
.def(nb::new_([]() { return Pet::make(getRandomName(), 0); }))
.def(nb::new_(&Pet::make), "name"_a, "age"_a)
.def("speak", &Pet::speak);

If you need even more control, perhaps because you need to access the type object that Python passes as the
first argument of __new__ (which nb::new_ discards), you can write a .def_static("__new__", ...) and
matching .def("__init__", ...) yourself.

Note: Unpickling an object of type Foo normally requires that Foo.__new__(Foo) produce something that
__setstate__ can be called on. Any custom nb::new_ methods will not satisfy this requirement, because they
return a fully-constructed object. In order to maintain pickle compatibility, nanobind by default will add an ad-
ditional __new__ overload that takes no extra arguments and calls the nanobind built-in inst_alloc(). This
won’t make your class constructible with no arguments, because there’s no corresponding __init__; it just helps
unpickling work. If your first nb::new_ method is one that takes no arguments, then nanobind won’t add its own,
and you’ll have to deal with unpickling some other way.

12.16. Customizing Python object creation 76

CHAPTER

THIRTEEN

EXCEPTIONS

13.1 Automatic conversion of C++ exceptions

When Python calls a C++ function, that function might raise an exception instead of returning a result. In such a
case, nanobind will capture the C++ exception and then raise an equivalent exception within Python. This automatic
conversion supports std::exception, common subclasses, and several classes that convert to specific Python
exceptions as shown below:

Exception thrown by C++ Translated to Python exception type
std::exception RuntimeError
std::bad_alloc MemoryError
std::domain_error ValueError
std::invalid_argument ValueError
std::length_error ValueError
std::out_of_range IndexError
std::range_error ValueError
std::overflow_error OverflowError
nb::stop_iteration StopIteration (used to implement custom iterator)
nb::index_error IndexError (used to indicate out of bounds access in

__getitem__, __setitem__, etc.)
nb::key_error KeyError (used to indicate an invalid access in __getitem__,

__setitem__, etc.)
nb::value_error ValueError (used to indicate an invalid value in operations like

container.remove(...))
nb::type_error TypeError
nb::buffer_error BufferError
nb::import_error ImportError
nb::attribute_error AttributeError
Any other exception SystemError

Exception translation is not bidirectional. A C++ catch (nb::key_error) block will not catch a Python
KeyError. Use nb::python_error for this purpose (see the example below for details).

The is also a special exception nb::cast_error that may be raised by the call operator
nb::handle::operator() and nb::cast() when argument(s) cannot be converted to Python objects.

77

nanobind Documentation

13.2 Handling custom exceptions

nanobind can also expose custom exception types. The nb::exception<T> helper resembles nb::class_<T>
and registers a new exception type within the provided scope.

NB_MODULE(my_ext, m) {
nb::exception<CppExp>(m, "PyExp");

}

Here, it creates my_ext.PyExp. Subsequently, any C++ exception of type CppExp crossing the language barrier
will automatically convert to my_ext.PyExp.

A Python exception base class can optionally be specified. For example, the snippet below causes PyExp to inherit
from RuntimeError (the default is Exception). The built-in Python exception classes are listed here.

nb::exception<CppExp>(module, "PyExp", PyExc_RuntimeError);

In more complex cases, nb::register_exception_translator() can be called to register a custom exception
translation routine. It takes a stateless callable (e.g. a function pointer or a lambda function without captured vari-
ables) with the call signature void(const std::exception_ptr &, void*) and an optional payload pointer
value that will be passed to the second parameter of the callable.

When a C++ exception is captured by nanobind, all registered exception translators are tried in reverse order of
registration (i.e. the last registered translator has the first chance of handling the exception).

Inside the translator, call std::rethrow_exception() within a try-catch block to re-throw the exception and
capture supported exception types. The catch block should call PyErr_SetString or PyErr_Format (1, 2) to set
a suitable Python error status. The following example demonstrates this pattern to convert MyCustomException
into a Python IndexError.

nb::register_exception_translator(
[](const std::exception_ptr &p, void * /* unused */) {

try {
std::rethrow_exception(p);

} catch (const MyCustomException &e) {
PyErr_SetString(PyExc_IndexError, e.what());

}
});

Multiple exceptions can be handled by a single translator. nanobind captures unhandled exceptions and forwards
them to the preceding translator. If none of the exception translators succeeds, it will convert according to the
previously discussed default rules.

Note: When the exception translator returns normally, it must have set a Python error status. Otherwise, Python
will crash with the message SystemError: error return without exception set.

Unsupported exception types should not be caught, or may be explicitly (re-)thrown to delegate them to the other
exception translators.

13.2. Handling custom exceptions 78

https://docs.python.org/3/c-api/exceptions.html#standard-exceptions
https://docs.python.org/3/c-api/exceptions.html#c.PyErr_SetString
https://docs.python.org/3/c-api/exceptions.html#c.PyErr_Format

nanobind Documentation

13.3 Capturing Python exceptions within C++

When nanobind-based C++ code calls a Python function that raises an exception, it will automatically convert into
a nb::python_error raised on the C++ side. This exception type can be caught and handled in C++ or propagate
back into Python, where it will undergo reverse conversion.

Exception raised in Python Translated to C++ exception type
Any Python Exception nb::python_error

The class exposes various members to obtain further information about the exception. The .type() and .value()
methods provide information about the exception type and value, while .what() generates a human-readable
representation including a backtrace.

A use of the .matches() method to distinguish different exception types is shown below:

try {
nb::object file = nb::module_::import_("io").attr("open")("file.txt", "r");
nb::object text = file.attr("read")();
file.attr("close")();

} catch (const nb::python_error &e) {
if (e.matches(PyExc_FileNotFoundError)) {

nb::print("file.txt not found");
} else if (e.matches(PyExc_PermissionError)) {

nb::print("file.txt found but not accessible");
} else {

throw;
}

}

Note that the previously discussed automatic conversion of C++ exception does not apply here. Errors raised from
Python always convert to nb::python_error.

13.4 Handling errors from the Python C API

Whenever possible, use nanobind wrappers instead of calling the Python C API directly. Otherwise, you must
carefully manage reference counts and adhere to the nanobind error protocol outlined below.

When a Python C API call fails with an error status, you must immediately throw nb::python_error(); to
capture the error and handle it using appropriate C++ mechanisms. This includes calls to error setting functions
such as PyErr_SetString (custom exception translators are excluded from this rule).

PyErr_SetString(PyExc_TypeError, "C API type error demo");
throw nb::python_error();

// But it would be easier to simply...
throw nb::type_error("nanobind wrapper type error");

Alternately, to ignore the error, call PyErr_Clear(). Any Python error must be thrown or cleared, or nanobind will
be left in an invalid state.

13.3. Capturing Python exceptions within C++ 79

https://docs.python.org/3/c-api/exceptions.html#c.PyErr_Clear

nanobind Documentation

13.5 Chaining exceptions (‘raise from’)

Python has a mechanism for indicating that exceptions were caused by other exceptions:

try:
print(1 / 0)

except Exception as exc:
raise RuntimeError("could not divide by zero") from exc

To do a similar thing in nanobind, you can use the nb::raise_from function, which requires a
nb::python_error and re-raises it with a chained exception object.

nb::callable f = ...;
int arg = 123;
try {

f(arg);
} catch (nb::python_error &e) {

nb::raise_from(e, PyExc_RuntimeError, "Could not call 'f' with %i", arg);
}

The function is internally based on the Python function PyErr_FormatV and takes printf-style arguments fol-
lowing the format descriptor.

An even lower-level interface is available via nb::chain_error.

13.6 Handling unraisable exceptions

If a Python function invoked from a C++ destructor or any function marked noexcept(true) (collectively, “noex-
cept functions”) throws an exception, there is no way to propagate the exception, as such functions may not throw.
Should they throw or fail to catch any exceptions in their call graph, the C++ runtime calls std::terminate() to
abort immediately.

Similarly, Python exceptions raised in a class’s __del__ method do not propagate, but are logged by Python as an
unraisable error. In Python 3.8+, a system hook is triggered and an auditing event is logged.

Any noexcept function should have a try-catch block that traps nb::python_error (or any other exception that
can occur). A useful approach is to convert them to Python exceptions and then discard_as_unraisable as
shown below.

void nonthrowing_func() noexcept(true) {
try {

// ...
} catch (nb::python_error &e) {

// Discard the Python error using Python APIs, using the C++ magic
// variable __func__. Python already knows the type and value and of the
// exception object.
e.discard_as_unraisable(__func__);

} catch (const std::exception &e) {
// Log and discard C++ exceptions.
third_party::log(e);

}
}

13.5. Chaining exceptions (‘raise from’) 80

https://docs.python.org/3/library/sys.html#sys.unraisablehook

CHAPTER

FOURTEEN

N-DIMENSIONAL ARRAYS

nanobind provides two alternative interfaces to exchange array data between Python and C++.

14.1 The nb::ndarray<..> class

nanobind can exchange n-dimensional arrays (henceforth “ndarrays”) with popular array programming frame-
works including NumPy, PyTorch, TensorFlow, and JAX. It supports zero-copy exchange using two protocols:

• The classic buffer protocol.

• DLPack, a GPU-compatible generalization of the buffer protocol.

nanobind knows how to talk to each framework and takes care of all the nitty-gritty details.

To use this feature, you must add the include directive

#include <nanobind/ndarray.h>

to your code. Following this, you can bind functions with nb::ndarray<...>-typed parameters and return values.

14.1.1 Binding functions that take arrays as input

A function that accepts a nb::ndarray<>-typed parameter (i.e., without template parameters) can be called with
any array from any framework regardless of the device on which it is stored. The following example binding
declaration uses this functionality to inspect the properties of an arbitrary input array:

m.def("inspect", [](nb::ndarray<> a) {
printf("Array data pointer : %p\n", a.data());
printf("Array dimension : %zu\n", a.ndim());
for (size_t i = 0; i < a.ndim(); ++i) {

printf("Array dimension [%zu] : %zu\n", i, a.shape(i));
printf("Array stride [%zu] : %zd\n", i, a.stride(i));

}
printf("Device ID = %u (cpu=%i, cuda=%i)\n", a.device_id(),

int(a.device_type() == nb::device::cpu::value),
int(a.device_type() == nb::device::cuda::value)

);
printf("Array dtype: int16=%i, uint32=%i, float32=%i\n",

a.dtype() == nb::dtype<int16_t>(),
a.dtype() == nb::dtype<uint32_t>(),
a.dtype() == nb::dtype<float>()

);
});

Below is an example of what this function does when called with a NumPy array:

81

https://numpy.org
https://pytorch.org
https://www.tensorflow.org
https://jax.readthedocs.io
https://docs.python.org/3/c-api/buffer.html
https://github.com/dmlc/dlpack

nanobind Documentation

>>> my_module.inspect(np.array([[1,2,3], [3,4,5]], dtype=np.float32))
Array data pointer : 0x1c30f60
Array dimension : 2
Array dimension [0] : 2
Array stride [0] : 3
Array dimension [1] : 3
Array stride [1] : 1
Device ID = 0 (cpu=1, cuda=0)
Array dtype: int16=0, uint32=0, float32=1

14.1.2 Array constraints

In practice, it can often be useful to constrain what kinds of arrays constitute valid inputs to a function. For
example, a function expecting CPU storage would likely crash if given a pointer to GPU memory, and nanobind
should therefore prevent such undefined behavior. nb::ndarray<...> accepts template arguments to specify
such constraints. For example the function interface below guarantees that the implementation is only invoked
when it is provided with a MxNx3 array of 8-bit unsigned integers.

m.def("process", [](nb::ndarray<uint8_t, nb::shape<-1, -1, 3>,
nb::device::cpu> data) {

// Double brightness of the MxNx3 RGB image
for (size_t y = 0; y < data.shape(0); ++y)

for (size_t x = 0; x < data.shape(1); ++x)
for (size_t ch = 0; ch < 3; ++ch)

data(y, x, ch) = (uint8_t) std::min(255, data(y, x, ch) * 2);

});

The above example also demonstrates the use of nb::ndarray<...>::operator(), which provides direct
read/write access to the array contents. Note that this function is only available when the underlying data type
and ndarray dimension are specified via the ndarray<..> template parameters. It should only be used when the
array storage is accessible through the CPU’s virtual memory address space.

14.1.3 Constraint types

The following constraints are available

• A scalar type (float, uint8_t, etc.) constrains the representation of the ndarray.

Complex arrays (e.g., based on std::complex<float> or std::complex<double>) are supported.

• This scalar type can be further annotated with const, which is necessary if you plan to call nanobind func-
tions with arrays that do not permit write access.

• The nb::shape annotation (as in nb::shape<-1, 3>) simultaneously constrains the number of array di-
mensions and the size per dimension. A value of -1 leaves the corresponding dimension unconstrained.

nb::ndim is shorter to write when only the dimension should be constrained. For example, nb::ndim<3>
is equivalent to nb::shape<-1, -1, -1>.

• Device tags like nb::device::cpu or nb::device::cuda constrain the source device and address space.

• Two ordering tags nb::c_contig and nb::f_contig enforce contiguous storage in either C or Fortran
style. In the case of matrices, C-contiguous corresponds to row-major storage, and F-contiguous corre-
sponds to column-major storage. Without this tag, non-contiguous representations (e.g. produced by slicing
operations) and other unusual layouts are permitted.

This tag is mainly useful when directly accessing the array contents via nb::ndarray<...>::data().

14.1. The nb::ndarray<..> class 82

nanobind Documentation

14.1.4 Passing arrays in C++ code

nb::ndarray<...> behaves like a shared pointer with builtin reference counting: it can be moved or copied
within C++ code. Copies will point to the same underlying buffer and increase the reference count until they go
out of scope. It is legal call nb::ndarray<...> members from multithreaded code even when the GIL is not
held.

14.1.5 Fast array views

The following advice applies to performance-sensitive CPU code that reads and writes arrays using loops that
invoke nb::ndarray<...>::operator(). It does not apply to GPU arrays because they are usually not accessed
in this way.

Consider the following snippet, which fills a 2D array with data:

void fill(nb::ndarray<float, nb::ndim<2>, nb::c_contig, nb::device::cpu> arg) {
for (size_t i = 0; i < arg.shape(0); ++i)

for (size_t j = 0; j < arg.shape(1); ++j)
arg(i, j) = /* ... */;

}

While functional, this code is not perfect. The problem is that to compute the address of an entry, operator()
accesses the DLPack array descriptor. This indirection can break certain compiler optimizations.

nanobind provides the method ndarray<...>::view() to fix this. It creates a tiny data structure that provides
all information needed to access the array contents, and which can be held within CPU registers. All relevant
compile-time information (nb::ndim , nb::shape, nb::c_contig, nb::f_contig) is materialized in this view,
which enables constant propagation, auto-vectorization, and loop unrolling.

An improved version of the example using such a view is shown below:

void fill(nb::ndarray<float, nb::ndim<2>, nb::c_contig, nb::device::cpu> arg) {
auto v = arg.view(); // <-- new!

for (size_t i = 0; i < v.shape(0); ++i) // Important; use 'v' instead of 'arg'␣
↪everywhere in loop

for (size_t j = 0; j < v.shape(1); ++j)
v(i, j) = /* ... */;

}

Note that the view performs no reference counting. You may not store it in a way that exceeds the lifetime of the
original array.

When using OpenMP to parallelize expensive array operations, pass the firstprivate(view_1, view_2, ..
.) so that each worker thread can copy the view into its register file.

auto v = arg.view();
#pragma omp parallel for schedule(static) firstprivate(v)
for (...) { /* parallel loop */ }

14.1. The nb::ndarray<..> class 83

https://wiki.python.org/moin/GlobalInterpreterLock

nanobind Documentation

14.1.6 Specializing views at runtime

As mentioned earlier, element access via operator() only works when both the array’s scalar type and its dimen-
sion are specified within the type (i.e., when they are known at compile time); the same is also true for array views.
However, sometimes, it is useful that a function can be called with different array types.

You may use the ndarray<...>::view()method to create specialized views if a run-time check determines that
it is safe to do so. For example, the function below accepts contiguous CPU arrays and performs a loop over a
specialized 2D float view when the array is of this type.

void fill(nb::ndarray<nb::c_contig, nb::device::cpu> arg) {
if (arg.dtype() == nb::dtype<float>() && arg.ndim() == 2) {

auto v = arg.view<float, nb::ndim<2>>(); // <-- new!

for (size_t i = 0; i < v.shape(0); ++i) {
for (size_t j = 0; j < v.shape(1); ++j) {

v(i, j) = /* ... */;
}

}
} else { /* ... */ }

}

14.1.7 Constraints in type signatures

nanobind displays array constraints in docstrings and error messages. For example, suppose that we now call the
process() function with an invalid input. This produces the following error message:

>>> my_module.process(ndarray=np.zeros(1))

TypeError: process(): incompatible function arguments. The following argument types␣
↪are supported:

1. process(arg: ndarray[dtype=uint8, shape=(*, *, 3), order='C', device='cpu'], /) ->␣
↪None

Invoked with types: numpy.ndarray

Note that these type annotations are intended for humans–they will not currently work with automatic type checking
tools like MyPy (which at least for the time being don’t provide a portable or sufficiently flexible annotation of n-
dimensional arrays).

14.1.8 Arrays and function overloads

A bound function taking an ndarray argument can declare multiple overloads with different constraints (e.g., a CPU
and GPU implementation), in which case the first matching overload will be called. When no perfect match can
be found, nanobind will try each overload once more while performing basic implicit conversions: it will convert
strided arrays into C- or F-contiguous arrays (if requested) and perform type conversion. This, e.g., makes it possi-
ble to call a function expecting a float32 array with float64 data. Implicit conversions create temporary ndarrays
containing a copy of the data, which can be undesirable. To suppress them, add an nb::arg("my_array_arg").
noconvert() or "my_array_arg"_a.noconvert() function binding annotation.

14.1. The nb::ndarray<..> class 84

https://mypy.readthedocs.io/en/stable/

nanobind Documentation

14.1.9 Binding functions that return arrays

To return an ndarray from C++ code, you must indicate its type, shape, a pointer to CPU/GPU memory, the owner
of that data, and what framework (NumPy/..) should be used to encapsulate the array data.

The following simple binding declaration shows how to return a static 2x4 NumPy floating point matrix that does
not permit write access.

// at top level
const float data[] = { 1, 2, 3, 4, 5, 6, 7, 8 };

NB_MODULE(my_ext, m) {
m.def("ret_numpy", []() {

size_t shape[2] = { 2, 4 };
return nb::ndarray<nb::numpy, const float, nb::shape<2, -1>>(

/* data = */ data,
/* ndim = */ 2,
/* shape pointer = */ shape,
/* owner = */ nb::handle());

});
}

In this example, data is a global constant stored in the program’s data segment, which means that it will never be
deleted. In this special case, it is valid to specify a null owner (nb::handle()).

In general, the owner argument must be specify a Python object, whose continued existence keeps the underlying
memory region alive. If your ndarray bindings lead to undefined behavior (data corruption or crashes), then this
is usually an issue related to incorrect data ownership. Please review the section on data ownership for further
examples.

The auto-generated docstring of this function is:

ret_pytorch() -> np.ndarray[float32, writable=False, shape=(2, *)]

Calling it in Python yields

array([[1., 2., 3., 4.],
[5., 6., 7., 8.]], dtype=float32)

The following additional ndarray declarations are possible for return values:

• nb::numpy. Returns the ndarray as a numpy.ndarray.

• nb::pytorch . Returns the ndarray as a torch.Tensor.

• nb::tensorflow. Returns the ndarray as a tensorflow.python.framework.ops.EagerTensor.

• nb::jax. Returns the ndarray as a jaxlib.xla_extension.DeviceArray.

• No framework annotation. In this case, nanobind will return a raw Python dltensor capsule representing
the DLPack metadata.

When returning arrays, nanobind will not perform implicit conversions. Shape and order annotations like
nb::shape, nb::ndim , nb::c_contig, and nb::f_contig, are shown in the docstring, but nanobind won’t
check that they are actually satisfied. It will never convert an incompatible result into the right format.

Furthermore, non-CPU nd-arrays must be explicitly indicate the device type and device ID using special parameters
of the ndarray() constructor shown below. Device types indicated via template arguments, e.g., nb::ndarray<.
.., nb::device::cuda>, are only used for decorative purposes to generate an informative function docstring.

The full signature of the ndarray constructor is:

14.1. The nb::ndarray<..> class 85

https://docs.python.org/3/c-api/capsule.html
https://github.com/dmlc/dlpack

nanobind Documentation

ndarray(void *data,
size_t ndim,
const size_t *shape,
handle owner,
const int64_t *strides = nullptr,
dlpack::dtype dtype = nb::dtype<Scalar>(),
int32_t device_type = nb::device::cpu::value,
int32_t device_id = 0) { .. }

If no strides parameter is provided, the implementation will assume a C-style ordering. Both strides and
shape will be copied by the constructor, hence the targets of these pointers don’t need to remain valid following
the call.

An alternative form of the constructor takes std::initializer_list instead of shape/stride arrays for brace-
initialization and infers ndim:

ndarray(void *data,
std::initializer_list<size_t> shape,
handle owner,
st::initializer_list<int64_t> strides = { },
dlpack::dtype dtype = nb::dtype<Scalar>(),
int32_t device_type = nb::device::cpu::value,
int32_t device_id = 0) { .. }

14.1.10 Data ownership

The owner argument of the ndarray` constructor must specify a Python object that keeps the underlying memory
region alive.

A common use case entails returning an nd-array view of an existing C++ container. In this case, you could
construct a nb::capsule to take ownership of this container. A capsule is an opaque pointer with a destructor
callback. In this case, its destructor would call the C++ delete operator. An example is shown below:

m.def("ret_pytorch", []() {
// Dynamically allocate 'data'
float *data = new float[8] { 1, 2, 3, 4, 5, 6, 7, 8 };

// Delete 'data' when the 'owner' capsule expires
nb::capsule owner(data, [](void *p) noexcept {
delete[] (float *) p;

});

return nb::ndarray<nb::pytorch, float>(data, { 2, 4 }, owner);
});

In method bindings, you can use the rv_policy::reference_internal return value policy to set the owner to
the self argument of the method so that the nd-array will keep the associated Python/C++ instance alive. It is fine
to specify a null owner in this case.

struct Vector {
float pos[3];

};

nb::class_<Vector>(m, "Vector")
.def("pos",

[](Vector &v) {
return nb::ndarray<nb::numpy, float>(

(continues on next page)

14.1. The nb::ndarray<..> class 86

nanobind Documentation

(continued from previous page)

/* data = */ v.pos,
/* shape = */ { 3 },
/* owner = */ nb::handle()

);
}, nb::rv_policy::reference_internal);

In other situations, it may be helpful to have a capsule that manages the lifetime of data structures containing
multiple containers. The same capsule can be referenced from different nd-arrays and will call the deleter when all
of them have expired:

m.def("return_multiple", []() {
struct Temp {

std::vector<float> vec_1;
std::vector<float> vec_2;

};

Temp *temp = new Temp();
temp->vec_1 = std::move(...);
temp->vec_2 = std::move(...);

nb::capsule deleter(temp, [](void *p) noexcept {
delete (Temp *) p;

});

size_t size_1 = temp->vec_1.size();
size_t size_2 = temp->vec_2.size();

return std::make_pair(
nb::ndarray<nb::pytorch, float>(temp->vec_1.data(), { size_1 }, deleter),
nb::ndarray<nb::pytorch, float>(temp->vec_2.data(), { size_2 }, deleter)

);
});

14.1.11 Return value policies

Function bindings that return nd-arrays admit additional return value policy annotations to determine whether or
not a copy should be made. They are interpreted as follows:

• rv_policy::automatic causes the array to be copied when it has no owner and when it is not already
associated with a Python object.

• rv_policy::automatic_reference and rv_policy::reference automatic_reference and
reference never copy.

• rv_policy::copy always copies.

• rv_policy::none refuses the cast unless the array is already associated with an existing Python object (e.g.
a NumPy array), in which case that object is returned.

• rv_policy::reference_internal retroactively sets the ndarray’s owner field to a method’s self argu-
ment. It fails with an error if there is already a different owner.

• rv_policy::move is unsupported and demoted to rv_policy::copy.

14.1. The nb::ndarray<..> class 87

nanobind Documentation

14.1.12 Nonstandard arithmetic types

Low or extended-precision arithmetic types (e.g., int128, float16, bfloat) are sometimes used but don’t have
standardized C++ equivalents. If you wish to exchange arrays based on such types, you must register a partial
overload of nanobind::ndarray_traits to inform nanobind about it.

For example, the following snippet makes __fp16 (half-precision type on aarch64) available:

namespace nanobind {
template <> struct ndarray_traits<__fp16> {

static constexpr bool is_complex = false;
static constexpr bool is_float = true;
static constexpr bool is_bool = false;
static constexpr bool is_int = false;
static constexpr bool is_signed = true;

};
}

14.1.13 Frequently asked questions

Why does nanobind not accept my NumPy array?

When binding a function that takes an nb::ndarray<T, ...> as input, nanobind will by default require that array
to be writable. This means that the function cannot be called using NumPy arrays that are marked as constant.

If you wish your function to be callable with constant input, either change the parameter to nb::ndarray<const
T, ...> (if the array is parameterized by type), or write nb::ndarray<nb::ro> to accept a read-only array of
any type.

Limitations related to dtypes

Libraries like NumPy support arrays with flexible internal representations (dtypes), including

• Floating point and integer arrays with various bit depths

• Null-terminated strings

• Arbitrary Python objects

• Heterogeneous data structures composed of multiple fields

nanobind’s nb::ndarray<...> is based on the DLPack array exchange protocol, which causes it to be more
restrictive. Presently supported dtypes include signed/unsigned integers, floating point values, and boolean values.
Some nonstandard arithmetic types can be supported as well.

Nanobind can receive and return read-only arrays via the buffer protocol used to exchange data with NumPy. The
DLPack interface currently ignores this annotation.

14.2 The Eigen linear algebra library

Eigen is a header-only C++ library for linear algebra that offers dense and sparse matrix types along with a host
of algorithms that operate on them. Owing to its widespread use in many scientific projects, nanobind includes
custom type casters that enable bidirectional conversion between Eigen and Python array programming libraries.

These casters build on the previously discussed n-dimensional array class. You can therefore think of this section
as an easier interface to the same features that is preferable if your project uses Eigen.

14.2. The Eigen linear algebra library 88

https://numpy.org
https://github.com/dmlc/dlpack
http://eigen.tuxfamily.org

nanobind Documentation

14.2.1 Dense matrices and vectors

Add the following include directive to your binding code to exchange dense Eigen types:

#include <nanobind/eigen/dense.h>

Following this, you should be able to bind functions that accept and return values of type Eigen::Matrix<..>,
Eigen::Array<..>, Eigen::Vector<..>, Eigen::Ref<..>, Eigen::Map<..>, and their various specializa-
tions. Unevaluated expression templates are also supported.

nanobind may need to evaluate or copy the matrix/vector contents during type casting, which is sometimes unde-
sirable. The following cases explain when copying is needed, and how it can be avoided.

C++ → Python

Consider the following C++ function returning a dense Eigen type (Eigen::MatrixXf in this example). The
bound Python version of f() returns this data in the form of a numpy.ndarray.

Eigen::MatrixXf f() { ... }

If the C++ function returns by value, and when the Eigen type represents an evaluated expression, nanobind will
capture and wrap it in a NumPy array without making a copy. All other cases (returning by reference, returning an
unevaluated expression template) either evaluate or copy the array.

Python → C++

The reverse direction is more tricky. Consider the following 3 functions taking variations of a dense
Eigen::MatrixXf:

void f1(const Eigen::MatrixXf &x) { ... }
void f2(const Eigen::Ref<Eigen::MatrixXf> &x) { ... }
void f3(const nb::DRef<Eigen::MatrixXf> &x) { ... }

The Python bindings of these three functions can be called using any of a number of different CPU-resident 2D
array types (NumPy arrays, PyTorch/Tensorflow/JAX tensors, etc.). However, the following limitations apply:

• f1() will always perform a copy of the array contents when called from Python. This is because
Eigen::MatrixXf is designed to own the underlying storage, which is sadly incompatible with the idea
of creating a view of an existing Python array.

• f2() very likely copies as well! This may seem non-intuitive, since Eigen::Ref<..> exists to avoid this
exact problem.

The problem is that Eigen normally expects a very specific memory layout (Fortran/column-major layout),
while Python array frameworks actually use the opposite by default (C/row-major layout). Array slices are
even more problematic and always require a copy.

• f3() uses nb::DRef to support any memory layout (row-major, column-major, slices) without copying. It
may still perform an implicit conversion when called with the wrong data type—for example, the function
expects a single precision array, but NumPy matrices often use double precision.

If that is undesirable, you may bind the function as follows, in which case nanobind will report a TypeError
if an implicit conversion would be needed.

m.def("f1", &f1, nb::arg("x").noconvert());

This parameter passing convention can also be used to mutate function parameters, e.g.:

void f4(nb::DRef<Eigen::MatrixXf> x) { x *= 2; }

14.2. The Eigen linear algebra library 89

nanobind Documentation

14.2.2 Sparse matrices

Add the following include directive to your binding code to exchange sparse Eigen types:

#include <nanobind/eigen/sparse.h>

The Eigen::SparseMatrix<..> type maps to either scipy.sparse.csr_matrix or scipy.sparse.
csc_matrix depending on whether row- or column-major storage is used.

There is no support for Eigen sparse vectors because an equivalent type does not exist as part of scipy.sparse.

14.2. The Eigen linear algebra library 90

CHAPTER

FIFTEEN

PACKAGING

A Python wheel is a self-contained binary file that bundles Python code and extension libraries along with metadata
such as versioned package dependencies. Wheels are easy to download and install, and they are the recommended
mechanism for distributing extensions created using nanobind.

This section walks through the recommended sequence of steps to build wheels and optionally automate this process
to simultaneously target many platforms (Linux, Windows, macOS) and processors (i386, x86_64, arm64) using
the GitHub Actions CI service.

Note that all of the recommended practices have already been implemented in the nanobind_example repository,
which is a minimal C++ project with nanobind-based bindings. You may therefore prefer to clone this repository
and modify its contents.

15.1 Step 1: Overview

The example project has a simple directory structure:

README.md
CMakeLists.txt
pyproject.toml
src/

my_ext.cpp
my_ext/

__init__.py

The file CMakeLists.txt contains the C++-specifics part of the build system, while pyproject.toml explains
how to turn the example into a wheel. The file README.md should ideally explain how to use the project in more
detail. Its contents are arbitrary, but the file must exist for the following build system to work.

All source code is located in a src directory containing the Python package as a subdirectory.

Compilation will turn my_ext.cpp into a shared library in the package directory, which has an underscored
platform-dependent name (e.g., _my_ext_impl.cpython-311-darwin.so) to indicate that it is an implemen-
tation detail. The src/my_ext/__init__.py imports the extension and exposes relevant functionality. In this
small example project, it only contains a single line:

from ._my_ext_impl import hello

The file src/my_ext.cpp contains minimal bindings for an example function:

#include <nanobind/nanobind.h>

NB_MODULE(_my_ext_impl, m) {
m.def("hello", []() { return "Hello world!"; });

}

The next two steps will set up the infrastructure needed for wheel generation.

91

https://github.com/features/actions
https://github.com/wjakob/nanobind_example

nanobind Documentation

15.2 Step 2: Specify build dependencies and metadata

In the root directory of the project, create a file named pyproject.toml listing build-time dependencies. Note that
runtime dependencies do not need to be added here. The following core dependencies are required by nanobind:

[build-system]
requires = ["scikit-build-core >=0.4.3", "nanobind >=1.3.2"]
build-backend = "scikit_build_core.build"

You may need to increase the minimum nanobind version in the above snippet if you are using features from
versions newer than 1.3.2.

Just below the list of build-time requirements, specify project metadata including:

• The project’s name (which must be a valid package name)

• The version number

• A brief (1-line) description of the project

• The name of a more detailed README file

• The list of authors with email addresses.

• The software license

• The project web page

• Runtime dependencies, if applicable

An example is shown below:

[project]
name = "my_ext"
version = "0.0.1"
description = "A brief description of what this project does"
readme = "README.md"
requires-python = ">=3.8"
authors = [

{ name = "Your Name", email = "your.email@address.com" },
]
classifiers = [

"License :: BSD",
]
Optional: runtime dependency specification
dependencies = ["cryptography >=41.0"]

[project.urls]
Homepage = "https://github.com/your/project"

We will use scikit-build-core to build wheels, and this tool also has its own configuration block in pyproject.
toml. The following defaults are recommended:

[tool.scikit-build]
Protect the configuration against future changes in scikit-build-core
minimum-version = "0.4"

Setuptools-style build caching in a local directory
build-dir = "build/{wheel_tag}"

Build stable ABI wheels for CPython 3.12+
wheel.py-api = "cp312"

15.2. Step 2: Specify build dependencies and metadata 92

https://github.com/scikit-build/scikit-build-core

nanobind Documentation

15.3 Step 3: Set up a CMake build system

Next, we will set up a suitable CMakeLists.txt file in the root directory. Since this build system is designed
to be invoked through scikit-build-core, it does not make sense to perform a standalone CMake build. The
message at the top warns users attempting to do this.

Set the minimum CMake version and policies for highest tested version
cmake_minimum_required(VERSION 3.15...3.27)

Set up the project and ensure there is a working C++ compiler
project(my_ext LANGUAGES CXX)

Warn if the user invokes CMake directly
if (NOT SKBUILD)
message(WARNING "\
This CMake file is meant to be executed using 'scikit-build-core'.
Running it directly will almost certainly not produce the desired
result. If you are a user trying to install this package, use the
command below, which will install all necessary build dependencies,
compile the package in an isolated environment, and then install it.
===
$ pip install .
===
If you are a software developer, and this is your own package, then
it is usually much more efficient to install the build dependencies
in your environment once and use the following command that avoids
a costly creation of a new virtual environment at every compilation:
===
$ pip install nanobind scikit-build-core[pyproject]
$ pip install --no-build-isolation -ve .
===
You may optionally add -Ceditable.rebuild=true to auto-rebuild when
the package is imported. Otherwise, you need to rerun the above
after editing C++ files.")

endif()

Next, import Python and nanobind including the Development.SABIModule component that can be used to create
stable ABI builds.

Try to import all Python components potentially needed by nanobind
find_package(Python 3.8
REQUIRED COMPONENTS Interpreter Development.Module
OPTIONAL_COMPONENTS Development.SABIModule)

Import nanobind through CMake's find_package mechanism
find_package(nanobind CONFIG REQUIRED)

The last two steps build and install the actual extension

We are now ready to compile the actual extension module
nanobind_add_module(
Name of the extension
_my_ext_impl

Target the stable ABI for Python 3.12+, which reduces
the number of binary wheels that must be built. This
does nothing on older Python versions

(continues on next page)

15.3. Step 3: Set up a CMake build system 93

https://docs.python.org/3/c-api/stable.html

nanobind Documentation

(continued from previous page)

STABLE_ABI

Source code goes here
src/my_ext.cpp

)

Install directive for scikit-build-core
install(TARGETS _my_ext_impl LIBRARY DESTINATION my_ext)

15.4 Step 4: Install the package locally

To install the package, run

$ cd <project-directory>
$ pip install .

pip will parse the pyproject.toml file and create a fresh environment containing all needed dependencies.
Following this, you should be able to install and access the extension.

>>> import my_ext
>>> my_ext.hello()
'Hello world!'

Alternatively, you can use the following command to generate a .whl file instead of installing the package.

$ pip wheel .

15.5 Step 5: Incremental rebuilds

The pip install and pip wheel commands are extremely conservative to ensure reproducible builds. They cre-
ate a pristine virtual environment and install build-time dependencies before compiling the extension from scratch.

It can be frustrating to wait for this lengthy sequence of steps after every small change to a source file during the
active development phase of a project. To avoid this, first install the project’s build dependencies, e.g.:

$ pip install nanobind scikit-build-core[pyproject]

Next, install the project without build isolation to enable incremental builds:

$ pip install --no-build-isolation -ve .

This command will need to be run after every change to reinstall the updated package. For an even more interactive
experience, use

$ pip install --no-build-isolation -Ceditable.rebuild=true -ve .

This will automatically rebuild any code (if needed) whenever the my_ext package is imported into a Python
session.

15.4. Step 4: Install the package locally 94

nanobind Documentation

15.6 Step 6: Build wheels in the cloud

On my machine, the pip wheel command produces a file named my_ext-0.0.
1-cp311-cp311-macosx_13_0_arm64.whl that is specific to Python 3.11 running on an arm64 macOS
machine. Other Python versions and operating systems each require their own wheels, which leads to a dauntingly
large build matrix (though nanobind’s stable ABI support will help to significantly reduce the size of this matrix
once Python 3.12 is more widespread).

Rather than building these wheels manually on different machines, it is far more efficient to use GitHub actions
along with the powerful cibuildwheel package to fully automate the process.

To do so, create a file named .github/workflows/wheels.yml containing the contents of the following file. You
may want to remove the on: push: lines, otherwise, the action will run after every commit, which is perhaps a
bit excessive. In this case, you can still trigger the action manually on the Actions tab of the GitHub project page.

Furthermore, append the following cibuildwheel-specific configuration to pyproject.toml:

[tool.cibuildwheel]
Necessary to see build output from the actual compilation
build-verbosity = 1

Optional: run pytest to ensure that the package was correctly built
test-command = "pytest {project}/tests"
test-requires = "pytest"

Needed for full C++17 support on macOS
[tool.cibuildwheel.macos.environment]
MACOSX_DEPLOYMENT_TARGET = "10.14"

Following each run, the action provides a downloadable build artifact, which is a ZIP file containing all the indi-
vidual wheel files for each platform.

By default, cibuildwheel will launch a very large build matrix, and it is possible that your extension is not
compatible with every single configuration. For example, suppose that the project depends on Python 3.9+ and
a 64 bit processor. In this case, add further entries to the [tool.cibuildwheel] block to remove incompatible
configurations from the matrix:

skip = ["cp38-*", "pp38-*"] # Skip CPython and PyPy 3.8
archs = ["auto64"] # Only target 64 bit architectures

The cibuildwheel documentation explains the possible options.

If you set up a GitHub actions secret named pypi_password containing a PyPI authentication token, the action
will automatically upload the generated wheels to the Python Package Index (PyPI) when the action is triggered
by a software release event.

15.6. Step 6: Build wheels in the cloud 95

https://cibuildwheel.readthedocs.io/en/stable/
https://github.com/wjakob/nanobind_example/blob/master/.github/workflows/wheels.yml
https://cibuildwheel.readthedocs.io/en/stable/options/
https://docs.github.com/en/actions/security-guides/encrypted-secrets
https://pypi.org
https://docs.github.com/en/repositories/releasing-projects-on-github/managing-releases-in-a-repository

CHAPTER

SIXTEEN

TYPING

This section covers three broad typing-related topics:

1. How to create rich type annotation in C++ bindings so that projects using them can be effectively type-
checked.

2. How to automatically generate stub files that are needed to enable static type checking and autocompletion
in Python IDEs.

3. How to write pattern files to handle advanced use cases requiring significant stub customization.

16.1 Signature customization

In larger binding projects, some customization of function or class signatures is often needed so that static type
checkers can effectively use the generated stubs.

16.1.1 Functions

Nanobind generates typed function signatures automatically, but these are not always satisfactory. For example,
the following function binding

nb::class_<Int>(m, "Int")
.def(nb::self == nb::self);

is likely to be rejected because the default __eq__ function signature

__eq__(self, arg: Int, /) -> bool

is more specific than that of the parent class object:

__eq__(self, arg: object, /) -> bool

In this case, a static type checker like MyPy will report a failure:

error: Argument 1 of "__eq__" is incompatible with supertype "object"; supertype␣
↪defines the argument type as "object" [override]

To handle such cases, you can use the nb::sig attribute to overrides the function signature with a custom string.

nb::class_<Int>(m, "Int")
.def(nb::self == nb::self,

nb::sig("def __eq__(self, arg: object, /) -> bool"));

The argument must be a valid Python function signature of the form def name(...) -> ... without trailing
colon (":") and newlines, where name must furthermore match the name given to the binding declaration. In this

96

https://github.com/python/mypy

nanobind Documentation

case, the name is implicitly given by the operator. It must match "name" in the case of .def("name", ...)-style
bindings with an explicit name. The signature can span multiple lines, e.g., to prefix one or more decorators.

The modified signature is shown in generated stubs, docstrings, and error messages (e.g., when a function receives
incompatible arguments).

In cases where a custom signature is only needed to tweak how nanobind renders the signature of a default argument,
the more targeted nb::arg("name").sig("signature") annotation is preferable to nb::sig.

16.1.2 Classes

Signature customization is also available for class bindings, though only stubs are affected in this case.

Consider the example below, which defines an iterable vector type storing integers. Suppose that
GeneralIterator iterates over arbitrary data and does not provide a useful int-typed signature.

using IntVec = std::vector<int>;

nb::class_<IntVec>(m, "IntVec")
.def("__iter__",

[](const IntVec &v) -> GeneralIterator { ... })

It may be useful to inherit from collections.abc.Iterable[int] to communicate more information to static
type checkers, but such a Python → C++ inheritance chain is not permitted by nanobind.

Stubs often take certain liberties in deviating somewhat from the precise type signature of the underlying imple-
mentation, which is fine as long as this improves the capabilities of the type checker (the stubs are only used by the
static type checking phase, which never imports the actual extension).

Here, we could specify

nb::class_<IntVec>(m, "IntVec",
nb::sig("class IntVec(collections.abc.Iterable[int])"));

This is technically a lie. Such shenanigans are worthwhile because they can greatly improve the development
experience (e.g. VS Code autocomplete) involving compiled extensions.

The supplied signature string must be a valid Python class signature of the form class ClassName(...) exclud-
ing trailing colon (":") and newline, where ClassName must furthermore match the name provided in the main
class binding declaration. The signature can span multiple lines, e.g., to prefix one or more decorators.

16.2 Generic types

16.2.1 Parameterizing generic types

Various standard Python types are generic can be parameterized to improve the effectiveness of static type checkers
such as MyPy. In the presence of such a specialization, a type checker can, e.g., infer that the variable a below is
of type int.

def f() -> list[int]: ...

a = f()[0]

This is even supported for abstract types—for example, collections.abc.Mapping[str, int] indicates an
abstract mapping from strings to integers.

nanobind provides the template class nb::typed<T, Ts...> to generate parameterized type annotations in C++
bindings. For example, the argument and return value of the following function binding reproduces the exact list
and mapping types mentioned above.

16.2. Generic types 97

https://code.visualstudio.com
https://typing.readthedocs.io/en/latest/spec/generics.html
https://github.com/python/mypy

nanobind Documentation

m.def("f", [](nb::typed<nb::mapping, nb::str, int> arg)
-> nb::typed<nb::list, int> { ... });

(Usually, nb::typed<T, Ts...> would be applied to wrapper types, though this is not a strict limitation.)

An important limitation of this feature is that it only affects function signatures. Nanobind will (as always) ensure
that f can only be called with a nb::mapping, but it will not insert additional runtime checks to verify that arg
indeed maps strings to integers. It is the responsibility of the function to perform these checks and, if needed, to
raise a nb::type_error.

The parameterized C++ type nb::typed<T, Ts...> subclasses the type T and can be used interchangeably with
T. The other arguments (Ts...) are used to generate a Python type signature but have no other effect (for example,
parameterizing by str on the Python end can alternatively be achieved by passing nb::str, std::string, or
const char* as part of the Ts.. parameter pack).

16.2.2 Creating generic types

Python types inheriting from types.Generic can be parameterized by other types including generic type variables
that act as placeholders. Such constructions enable more effective static type checking. In the snippet below, tools
like MyPy or PyRight can infer that x and y have types Wrapper[int] and int, respectively.

import typing

1. Instantiate a placeholder type ("type variable") used below
T = typing.TypeVar("T")

2. Create a generic type by inheriting from typing.Generic
class Wrapper(typing.Generic[T]):

The constructor references the placeholder type
def __init__(self, value: T):

self.value = value

.. this type is then preserved in the getter
def get(self) -> T:

return self.value

Based on the typed constructor, MyPy knows that 'x' has type 'Wrapper[int]'
x = Wrapper(3)

Based on the typed 'Wrapped.get' method, 'y' is inferred to have type 'int'
y = x.get()

Note that parameterization of a generic type doesn’t generate new code or modify its functionality. It is not to be
confused with C++ template instantiation. The feature only exists to propagate fine-grained type information and
thereby aid static type checking.

Similar functionality can also be supported in nanobind-based binding projects. This looks as follows:

#include <nanobind/typing.h> // needed by nb::type_var below

struct Wrapper {
nb::object value;

};

NB_MODULE(my_ext, m) {
// 1. Instantiate a placeholder type ("type variable") used below
m.attr("T") = nb::type_var("T");

(continues on next page)

16.2. Generic types 98

https://docs.python.org/3/library/typing.html#typing.Generic
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://github.com/python/mypy
https://github.com/microsoft/pyright

nanobind Documentation

(continued from previous page)

// 2. Create a generic type, and indicate in generated stubs
// that it derives from Generic[T]
nb::class_<Wrapper> wrapper(m, "Wrapper", nb::is_generic(),

nb::sig("class Wrapper(typing.Generic[T])"))
.def(nb::init<nb::object>(),

nb::sig("def __init__(self, arg: T, /) -> None"))
.def("get", [](Wrapper &w) { return w.value; },

nb::sig("def get(self, /) -> T"));
}

This involves the following steps:

• The nb::type_var constructor generates a type variable analogous to the previous Python snippet and
assigns it to the name "T" within the module.

• If we were to follow the previous Python example, the next step would require defining Wrapper as a subclass
of typing.Generic[T]. However, this isn’t possible because nanobind-based classes cannot derive from
Python types.

• The solution to this problem takes the following liberties:

– It passes the nb::is_generic annotation to the nb::class_<...> constructor, causing the addi-
tion of a __class_getattr__ member that enables type parameterization. Following this step, an
expression like Wrapper[int] becomes valid and returns a typing.TypeAlias (in other words, the
behavior is as if we had derived from typing.Generic[T]).

However, MyPy and similar tools don’t quite know what to do with custom types overriding
__class_getattr__ themselves, since the official parameterization mechanism is to subclass
typing.Generic.

– Therefore, we lie about this in the stub and declare typing.Generic[T] as a base class. Only static
type checkers will see this information, and it helps them to interpret how the type works.

– That’s it!

You may also extend parameterized forms of such generic types:

nb::class_<Subclass>(m, "Subclass", wrapper[nb::type<Foo>()]);

nanobind’s stub generator will render this as class Subclass(Wrapper[Foo]):.

16.2.3 Any-typed return values

The return value of a function can sometimes be unclear (dynamic), in which case it can be helpful to declare
typing.Any as a pragmatic return type (this effectively disables analysis of the return value in static type checkers).
nanobind provides a nb::any wrapper type that is equivalent to nb::object except that its type signature renders
as typing.Any to facilitate this.

16.3 Stub generation

A stub file provides a typed and potentially documented summary of a module’s class, function, and variable
declarations. Stub files have the extension .pyi and are often shipped along with Python extensions. They are
needed to enable autocompletion and static type checking in tools like Visual Studio Code, MyPy, PyRight and
PyType.

Take for example the following function:

16.3. Stub generation 99

https://github.com/python/mypy
https://docs.python.org/3/library/functions.html#object
https://code.visualstudio.com
https://github.com/python/mypy
https://github.com/microsoft/pyright
https://github.com/google/pytype

nanobind Documentation

def square(x: int) -> int:
'''Return the square of the input'''
return x*x

The associated default stub removes the body, while retaining the docstring:

def square(x: int) -> int:
'''Return the square of the input'''

An undocumented stub replaces the entire body with the Python ellipsis object (...).

def square(x: int) -> int: ...

Complex default arguments are often also abbreviated with ... to improve the readability of signatures. You can
read more about stub files in the typing documentation and the MyPy documentation.

nanobind’s stubgen tool automates the process of stub generation to turn modules containing a mixture of ordinary
Python code and C++ bindings into an associated .pyi file.

The main challenge here is that C++ bindings are unlike ordinary Python objects, which causes standard mecha-
nisms to extract their signature to fail. Existing tools like MyPy’s stubgen and pybind11-stubgen must therefore
parse docstrings to infer function signatures, which is brittle and does not always produce high-quality output.

nanobind functions expose a __nb_signature__ property, which provides structured information about typed
function signatures, overload chains, and default arguments. nanobind’s stubgen leverages this information to
reliably generate high-quality stubs that are usable by static type checkers.

There are three ways to interface with the stub generator described in the following subsections.

16.3.1 CMake interface

nanobind’s CMake interface provides the nanobind_add_stub() command for stub generation at build or install
time. It generates a single stub at a time–more complex cases involving large numbers of stubs are easily handled
using standard CMake constructs (e.g. a foreach() loop).

The command requires a target name (e.g., my_ext_stub) that must be unique but has no other significance. Once
all dependencies (DEPENDS parameter) are met, it will invoke stubgen to turn a single module (MODULE parameter)
into a stub file (OUTPUT parameter).

For this to work, the module must be importable. stubgen will add all paths specified as part of the PYTHON_PATH
parameter and then execute import my_ext, raising an error if this fails.

nanobind_add_stub(
my_ext_stub
MODULE my_ext
OUTPUT my_ext.pyi
PYTHON_PATH $<TARGET_FILE_DIR:my_ext>
DEPENDS my_ext

)

Typed extensions normally identify themselves via the presence of an empty file named py.typed in each module
directory. nanobind_add_stub() can optionally generate this file as well.

nanobind_add_stub(
...
MARKER_FILE py.typed
...

)

16.3. Stub generation 100

https://typing.readthedocs.io/en/latest/source/stubs.html
https://mypy.readthedocs.io/en/stable/stubs.html
https://mypy.readthedocs.io/en/stable/stubgen.html
https://github.com/sizmailov/pybind11-stubgen

nanobind Documentation

CMake tracks the generated outputs in its dependency graph. The combination of compiled extension module,
stub, and marker file can subsequently be installed by subsequent install() directives.

install(TARGETS my_ext DESTINATION ".")
install(FILES py.typed my_ext.pyi DESTINATION ".")

In certain situations, it may be tricky to import an extension that is built but not yet installed to its final destination.
To handle such cases, specify the INSTALL_TIME parameter to nanobind_add_stub() to delay stub generation
to the installation phase.

install(TARGETS my_ext DESTINATION ".")

nanobind_add_stub(
my_ext_stub
INSTALL_TIME
MODULE my_ext
OUTPUT my_ext.pyi
PYTHON_PATH "."

)

This requires several changes:

1. PYTHON_PATH must be adjusted so that it references a location relative to CMAKE_INSTALL_PREFIX from
which the installed module is importable.

2. The nanobind_add_stub() command should be preceded by install(TARGETS my_ext) and
install(FILES commands that place all data (compiled extension files, plain Python code, etc.) needed to
bring the module into an importable state.

Place all relevant install() directives within the same CMakeLists.txt file to ensure that these steps are
executed sequentially.

3. Dependencies (DEPENDS) no longer need to be listed. These are build-time constraints that do not apply in
the installation phase.

4. The output file path (OUTPUT) is relative to CMAKE_INSTALL_PREFIX and may need adjustments as well.

The nanobind_add_stub() command has a few other options, please refer to its documentation for details.

16.3.2 Command line interface

Alternatively, you can invoke stubgen on the command line. The nanobind package must be installed for this to
work, e.g., via pip install nanobind. The command line interface is also able to generate multiple stubs at
once (simply specify -m MODULE several times).

$ python -m nanobind.stubgen -m my_ext -M py.typed
Module "my_ext" ..
- importing ..
- analyzing ..
- writing stub "my_ext.pyi" ..
- writing marker file "py.typed" ..

Unless an output file (-o) or output directory (-O) is specified, this places the .pyi files directly into the module.
Existing stubs are overwritten without warning.

The program has the following command line options:

usage: python -m nanobind.stubgen [-h] [-o FILE] [-O PATH] [-i PATH] [-m MODULE]
[-r] [-M FILE] [-P] [-D] [-q]

(continues on next page)

16.3. Stub generation 101

nanobind Documentation

(continued from previous page)

Generate stubs for nanobind-based extensions.

options:
-h, --help show this help message and exit
-o FILE, --output-file FILE write generated stubs to the specified file
-O PATH, --output-dir PATH write generated stubs to the specified directory
-i PATH, --import PATH add the directory to the Python import path (can

specify multiple times)
-m MODULE, --module MODULE generate a stub for the specified module (can

specify multiple times)
-r, --recursive recursively process submodules
-M FILE, --marker-file FILE generate a marker file (usually named 'py.typed')
-p FILE, --pattern-file FILE apply the given patterns to the generated stub

(see the docs for syntax)
-P, --include-private include private members (with single leading or

trailing underscore)
-D, --exclude-docstrings exclude docstrings from the generated stub
-q, --quiet do not generate any output in the absence of failures

16.3.3 Python interface

Finally, you can import stubgen into your own Python programs and use it to programmatically generate stubs
with a finer degree of control.

To do so, construct an instance of the StubGen class and repeatedly call .put() to register modules or contents
within the modules (specific methods, classes, etc.). Afterwards, the .get() method returns a string containing
the stub declarations.

from nanobind.stubgen import StubGen
import my_module

sg = StubGen()
sg.put(my_module)
print(sg.get())

Note that for now, the nanobind.stubgen.StubGen API is considered experimental and not subject to the se-
mantic versioning policy used by the nanobind project.

16.4 Pattern files

In complex binding projects requiring static type checking, the previously discussed mechanisms for controlling
typed signatures (nb::sig, nb::typed) may be insufficient. Two common reasons are as follows:

• the @typing.overload chain associated with a function may sometimes require significant deviations from
the actual overloads present on the C++ side.

• Some members of a module could be inherited from existing Python packages or extension libraries, in which
case patching their signature via nb::sig is not even an option.

stubgen supports pattern files as a last-resort solution to handle such advanced needs. These are files written in a
domain-specific language (DSL) that specifies replacement patterns to dynamically rewrite stubs during generation.
To use one, simply add it to the nanobind_add_stub() command.

nanobind_add_stub(
...

(continues on next page)

16.4. Pattern files 102

nanobind Documentation

(continued from previous page)

PATTERN_FILE <PATH>
...

)

A pattern file contains sequence of patterns. Each pattern consists of a query and an indented replacement block
to be applied when the query matches.

This is the first pattern
query 1:

replacement 1

And this is the second one
query 2:

replacement 2

Empty lines and lines beginning with # are ignored. The amount of indentation is arbitrary: stubgenwill re-indent
the replacement as needed based on where the query matched.

When the stub generator traverses the module, it computes the fully qualified name of every type, function, property,
etc. (for example: "my_ext.MyClass.my_function"). The queries in a pattern file are checked against these
qualified names one by one until the first one matches.

For example, suppose that we had the following lackluster stub entry:

class MyClass:
def my_function(arg: object) -> object: ...

The pattern below matches this function stub and inserts an alternative with two typed overloads.

my_ext.MyClass.my_function:
@overload
def my_function(arg: int) -> int:

"""A helpful docstring"""

@overload
def my_function(arg: str) -> str: ...

Patterns can also remove entries, by simply not specifying a replacement block. Also, queries don’t have to match
the entire qualified name. For example, the following pattern deletes all occurrences of anything containing the
string secret somewhere in its name

secret:

In fact (you may have guessed it), the queries are regular expressions! The query supports all features of Python’s
builtin re library.

When the query uses groups, the replacement block may access the contents of each numbered group using using
the syntax \1, \2, etc. This permits writing generic patterns that can be applied to a number of stub entries at once:

__(eq|ne)__:
def __\1__(self, arg, /) -> bool: ...

Named groups are also supported:

__(?P<op>eq|ne)__:
def __\op__(self, arg, /) -> bool : ...

Finally, sometimes, it is desirable to rewrite only the signature of a function in a stub but to keep its docstring
so that it doesn’t have to be copied into the pattern file. The special escape code \doc references the previously

16.4. Pattern files 103

https://docs.python.org/3/library/re.html

nanobind Documentation

existing docstring.

my_ext.lookup:
def lookup(array: Array[T], index: int) -> T:

\doc

If your replacement rule requires additional types to work (e.g., from typing.*), you may use the special \from
escape code to import them:

@overload
my_ext.lookup:

\from typing import Optional as _Opt, Literal
def lookup(array: Array[T], index: Literal[0] = 0) -> _Opt[T]:

\doc

You may also add free-form text the beginning or the end of the generated stub. To do so, add an entry that matches
on module_name.__prefix__ or module_name.__suffix__.

16.4. Pattern files 104

CHAPTER

SEVENTEEN

UTILITIES

17.1 Evaluating Python expressions from strings

nanobind provides the eval() and exec() functions to evaluate Python expressions and statements. The following
example illustrates how they can be used.

// At beginning of file
#include <nanobind/eval.h>

...

// Evaluate in scope of main module
nb::object scope = nb::module_::import_("__main__").attr("__dict__");

// Evaluate an isolated expression
int result = nb::eval("my_variable + 10", scope).cast<int>();

// Evaluate a sequence of statements
nb::exec(

"print('Hello')\n"
"print('world!');",
scope);

C++11 raw string literals are also supported and quite handy for this purpose. The only requirement is that the first
statement must be on a new line following the raw string delimiter R"(, ensuring all lines have common leading
indent:

nb::exec(R"(
x = get_answer()
if x == 42:

print('Hello World!')
else:

print('Bye!')
)", scope

);

Note: eval() accepts a template parameter that describes how the string/file should be interpreted. Possible
choices include eval_expr (isolated expression), eval_single_statement (a single statement, return value is
always none), and eval_statements (sequence of statements, return value is always none). eval() defaults to
eval_expr and exec() is just a shortcut for eval<eval_statements>.

105

CHAPTER

EIGHTEEN

OBJECT OWNERSHIP, CONTINUED

This section covers intrusive reference counting as an alternative to shared pointers, and it explains the nitty-gritty
details of how shared and unique pointer conversion is implemented in nanobind.

18.1 Intrusive reference counting

nanobind provides a custom intrusive reference counting solution that completely solves the issue of shared
C++/Python object ownership, while avoiding the overheads and complexities of traditional C++ shared point-
ers (std::shared_ptr<T>).

The main limitation is that it requires adapting the base class of an object hierarchy according to the needs of
nanobind, which may not always be possible.

18.1.1 Motivation

Consider the following simple class with intrusive reference counting:

class Object {
public:

void inc_ref() const noexcept { ++m_ref_count; }

void dec_ref() const noexcept {
if (--m_ref_count == 0)

delete this;
}

private:
mutable std::atomic<size_t> m_ref_count { 0 };

};

It contains an atomic counter that stores the number of references. When the counter reaches zero, the object
deallocates itself. Easy and efficient.

The advantage of over std::shared_ptr<T> is that no separate control block must be allocated. Technical band-
aids like std::enable_shared_from_this<T> can also be avoided, since the reference count is always found
in the object itself.

However, one issue that tends to arise when a type like Object is wrapped using nanobind is that there are now
two separate reference counts referring to the same object: one in Python’s PyObject, and one in Object. This
can lead to a problematic reference cycle:

• Python’s PyObject needs to keep the Object instance alive so that it can be safely passed to C++ functions.

• The C++ Object may in turn need to keep the PyObject alive. This is the case when a subclass uses
trampolines (NB_TRAMPOLINE, NB_OVERRIDE) to catch C++ virtual function calls and potentially dispatch

106

nanobind Documentation

them to an overridden implementation in Python. In this case, the C++ instance needs to be able to perform
a function call on its own Python object identity, which requires a reference.

The source of the problem is that there are two separate counters that try to reason about the reference count of one
instance, which leads to an uncollectable inter-language reference cycle.

18.1.2 The solution

We can solve the problem by using just one counter:

• if an instance lives purely on the C++ side, the m_ref_count field is used to reason about the number of
references.

• The first time that an instance is exposed to Python (by being created from Python, or by being returned from
a bound C++ function), lifetime management switches over to Python.

The file nanobind/intrusive/counter.h includes an official sample implementation of this functionality. It contains
an extra optimization to pack either a reference counter or a pointer to a PyObject* into a single sizeof(void*)-
sized field.

The most basic interface, intrusive_counter represents an atomic counter that can be increased (via
intrusive_counter::inc_ref()) or decreased (via intrusive_counter::dec_ref()). When the counter
reaches zero, the object should be deleted, which dec_ref() indicates by returning true.

In addition to this simple counting mechanism, ownership of the object can also be transferred to Python (via
intrusive_counter::set_self_py()). In this case, subsequent calls to inc_ref() and dec_ref() modify
the reference count of the underlying Python object.

To incorporate intrusive reference counting into your own project, you would usually add an intrusive_counter-
typed member to the base class of an object hierarchy and expose it as follows:

#include <nanobind/intrusive/counter.h>

class Object {
public:

void inc_ref() noexcept { m_ref_count.inc_ref(); }
bool dec_ref() noexcept { return m_ref_count.dec_ref(); }

// Important: must declare virtual destructor
virtual ~Object() = default;

void set_self_py(PyObject *self) noexcept {
m_ref_count.set_self_py(self);

}

private:
nb::intrusive_counter m_ref_count;

};

// Convenience function for increasing the reference count of an instance
inline void inc_ref(Object *o) noexcept {

if (o)
o->inc_ref();

}

// Convenience function for decreasing the reference count of an instance
// and potentially deleting it when the count reaches zero
inline void dec_ref(Object *o) noexcept {

if (o && o->dec_ref())
(continues on next page)

18.1. Intrusive reference counting 107

https://github.com/wjakob/nanobind/blob/master/include/nanobind/intrusive/counter.h

nanobind Documentation

(continued from previous page)

delete o;
}

Alternatively, you could also inherit from intrusive_base, which obviates the need for all of the above declara-
tions:

class Object : public nb::intrusive_base {
public:

// ...
};

The main change in the bindings is that the base class must specify a nb::intrusive_ptr annotation to inform
an instance that lifetime management has been taken over by Python. This annotation is automatically inherited by
all subclasses. In the linked example, this is done via the Object::set_self_py() method that we can now call
from the class binding annotation:

nb::class_<Object>(
m, "Object",
nb::intrusive_ptr<Object>(

[](Object *o, PyObject *po) noexcept { o->set_self_py(po); }));

Also, somewhere in your binding initialization code, you must register Python reference counting hooks with the
intrusive reference counter class. This allows its implementation of the code in nanobind/intrusive/counter.
h to not depend on Python (this means that it can be used in projects where Python bindings are an optional
component).

nb::intrusive_init(
[](PyObject *o) noexcept {

nb::gil_scoped_acquire guard;
Py_INCREF(o);

},
[](PyObject *o) noexcept {

nb::gil_scoped_acquire guard;
Py_DECREF(o);

});

These counter.h include file references several functions that must be compiled somewhere inside the project,
which can be accomplished by including the following file from a single .cpp file.

#include <nanobind/intrusive/counter.inl>

Having to call inc_ref() and dec_ref() many times to perform manual reference counting in project code can
quickly become tedious. Nanobind also ships with a ref<T> RAII helper class to help with this.

#include <nanobind/intrusive/ref.h>

void foo() {
/// Assignment to ref<T> automatically increases the object's reference count
ref<MyObject> x = new MyObject();

// ref<T> can be used like a normal pointer
x->func();

} // <-- ref::~ref() calls dec_ref(), which deletes the now-unreferenced instance

When the file nanobind/intrusive/ref.h is included following nanobind/nanobind.h, it also exposes a
custom type caster to bind functions taking or returning ref<T>-typed values.

18.1. Intrusive reference counting 108

nanobind Documentation

That’s it. If you use this approach, any potential issues involving shared pointers, return value policies, reference
leaks with trampolines, etc., can be avoided from the beginning.

18.2 Shared pointers, continued

The following continues the discussion of shared pointers in the introductory section on object ownership and
provides detail on how shared pointer conversion is implemented by nanobind.

When the user calls a C++ function taking an argument of type std::shared_ptr<T> from Python, ownership
of that object must be shared between C++ to Python. nanobind does this by increasing the reference count of the
PyObject and then creating a std::shared_ptr<T> with a new control block containing a custom deleter that
will in turn reduce the Python reference count upon destruction of the shared pointer.

When a C++ function returns a std::shared_ptr<T>, nanobind checks if the instance already has a PyObject
counterpart (nothing needs to be done in this case). Otherwise, it indicates shared ownership by creating a tempo-
rary std::shared_ptr<T> on the heap that will be destructed when the PyObject is garbage collected.

The approach in nanobind was chosen following on discussions with Ralf Grosse-Kunstleve; it is unusual
in that multiple shared_ptr control blocks are potentially allocated for the same object, which means that
std::shared_ptr<T>::use_count() generally won’t show the true global reference count.

18.2.1 enable_shared_from_this

The C++ standard library class std::enable_shared_from_this<T> allows an object that inherits from it to
locate an existing std::shared_ptr<T> that manages that object. nanobind supports types that inherit from
enable_shared_from_this, with some caveats described in this section.

Background (not nanobind-specific): Suppose a type ST inherits from std::enable_shared_from_this<ST>.
When a raw pointer ST *obj or std::unique_ptr<ST> obj is wrapped in a shared pointer using a constructor
of the form std::shared_ptr<ST>(obj, ...), a reference to the new shared_ptr's control block is saved (as
std::weak_ptr<ST>) inside the object. This allows new shared_ptrs that share ownership with the existing
one to be obtained for the same object using obj->shared_from_this() or obj->weak_from_this().

nanobind’s support for std::enable_shared_from_this consists of three behaviors:

• If a raw pointer ST *obj is returned from C++ to Python, and there already exists an associated
std::shared_ptr<ST> which obj->shared_from_this() can locate, then nanobind will produce a
Python instance that shares ownership with it. The behavior is identical to what would happen if the
C++ code did return obj->shared_from_this(); (returning an explicit std::shared_ptr<ST> to
Python) rather than return obj;. The return value policy has limited effect in this case; you will get
shared ownership on the Python side regardless of whether you used rv_policy::take_ownership or
rv_policy::reference. (rv_policy::copy and rv_policy::move will still create a new object that
has no ongoing relationship to the returned pointer.)

– Note that this behavior occurs only if such a std::shared_ptr<ST> already exists! If not, then
nanobind behaves as it would without enable_shared_from_this: a raw pointer will trans-
fer exclusive ownership to Python by default, or will create a non-owning reference if you use
rv_policy::reference.

• If a Python object is passed to C++ as std::shared_ptr<ST> obj, and there already exists an associ-
ated std::shared_ptr<ST> which obj->shared_from_this() can locate, then nanobind will produce
a std::shared_ptr<ST> that shares ownership with it: an additional reference to the same control block,
rather than a new control block (as would occur without enable_shared_from_this). This improves
performance and makes the result of shared_ptr::use_count() more accurate.

• If a Python object is passed to C++ as std::shared_ptr<ST> obj, and there is no associated
std::shared_ptr<ST> that obj->shared_from_this() can locate, then nanobind will produce a
std::shared_ptr<ST> as usual (with a new control block whose deleter drops a Python object reference),
and will do so in a way that enables future calls to obj->shared_from_this() to find it as long as any
shared_ptr that shares this control block is still alive on the C++ side.

18.2. Shared pointers, continued 109

https://github.com/rwgk

nanobind Documentation

(Once all of the std::shared_ptr<ST>s that share this control block have been destroyed, the underlying
PyObject reference being managed by the shared_ptr deleter will be dropped, and shared_from_this()
will stop working. It can be reenabled by passing the Python object back to C++ as std::shared_ptr<ST>
once more, which will create another control block.)

Bindings for a class that supports enable_shared_from_this will be slightly larger than bindings for a class
that doesn’t, as nanobind must produce type-specific code to implement the above behaviors.

Warning: The shared_from_this() method will only work when there is actually a std::shared_ptr
managing the object. A nanobind instance constructed from Python will not have an associated
std::shared_ptr yet, so shared_from_this() will throw an exception if you pass such an instance to C++
using a reference or raw pointer. shared_from_this() will only work when there exists a corresponding live
std::shared_ptr on the C++ side.

The only situation where nanobind will create the first std::shared_ptr for an object (thus enabling
shared_from_this()), even with enable_shared_from_this, is when a Python instance is passed to C++
as the explicit type std::shared_ptr<T>. If you don’t do this, or if no such std::shared_ptr is still alive,
then shared_from_this() will throw an exception. It also works to create the std::shared_ptr on the
C++ side, such as by using a factory function which always uses std::make_shared<T>(...) to construct
the object, and returns the resulting std::shared_ptr<T> to Python.

If you need to enable shared_from_this immediately upon regular Python-side object construction (i.e.,
SomeType(*args) rather than SomeType.some_fn(*args)), you can bind a C++ function that returns
std::shared_ptr<T> as your class’s __new__ method. See the documentation on customizing object creation.

Warning: C++ code that receives a raw pointer T *obj must not assume that it has exclusive ownership of
obj, or even that obj is allocated on the C++ heap (via operator new); obj might instead be a subobject of a
nanobind instance allocated from Python. This applies even if T supports shared_from_this() and there is
no associated std::shared_ptr. Lack of a shared_ptr does not imply exclusive ownership; it just means
there’s no way to share ownership with whoever the current owner is.

18.3 Unique pointers

The following continues the discussion of unique pointers in the introductory section on object ownership and
provides detail on how unique pointer conversion is implemented by nanobind.

Whereas std::shared_ptr<..> could abstract over details concerning storage and the deletion mechanism, this
is not possible in the simpler std::unique_ptr<..>, which means that some of those details leak into the type
signature.

When the user calls a C++ function taking an argument of type std::unique_ptr<T, Deleter> from Python,
ownership of that object must be transferred from C++ to Python.

• When Deleter is std::default_delete<T> (i.e., the default when no Deleter is specified), this owner-
ship transfer is only possible when the instance was originally created by a new expression within C++ and
nanobind has taken over ownership (i.e., it was created by a function returning a raw pointer T *value with
rv_policy::take_ownership, or a function returning a std::unique_ptr<T>). This limitation exists
because the Deleter will execute the statement delete value when the unique pointer expires, causing
undefined behavior when the object was allocated within Python (the problem here is that nanobind uses the
Python memory allocator and furthermore co-locates Python and C++ object storage. A delete expression
cannot be used in such a case). nanobind detects this, refuses unsafe conversions with a TypeError and
emits a separate warning.

• To enable ownership transfer under all conditions, nanobind provides a custom Deleter named
nb::deleter<T> that uses reference counting to keep the underlying PyObject alive during the life-
time of the unique pointer. Following this route requires changing function signatures so that they use

18.3. Unique pointers 110

nanobind Documentation

std::unique_ptr<T, nb::deleter<T>> instead of std::unique_ptr<T>. This custom deleter sup-
ports ownership by both C++ and Python and can be used in all situations.

In both cases, a Python object may continue to exist after ownership was transferred to C++ side. nanobind marks
this object as invalid: any operations involving it will fail with a TypeError. Reverse ownership transfer at a later
point will make it usable again.

Binding functions that return a std::unique_ptr<T, Deleter> always works: nanobind will then acquire or
reacquire ownership of the object.

Deleters other than std::default_delete<T> or nb::deleter<T> are not supported.

18.3. Unique pointers 111

CHAPTER

NINETEEN

LOW-LEVEL INTERFACE

nanobind exposes a low-level interface to provide fine-grained control over the sequence of steps that instantiates
a Python object wrapping a C++ instance. This is useful when writing generic binding code that manipulates
nanobind-based objects of various types.

Given a previous nb::class_<...> binding declaration, the nb::type<T>() template function can be used to
look up the Python type object associated with a C++ class named MyClass.

nb::handle py_type = nb::type<MyClass>();

In the case of failure, this line will return a nullptr pointer, which can be checked via py_type.is_valid().
We can verify that the type lookup succeeded, and that the returned instance indeed represents a nanobind-owned
type (via nb::type_check(), which is redundant in this case):

assert(py_type.is_valid() && nb::type_check(py_type));

nanobind knows the size, alignment, and C++ RTTI std::type_info record of all bound types. They can be
queried on the fly via nb::type_size(), nb::type_align(), and nb::type_info() in situations where this
is useful.

assert(nb::type_size(py_type) == sizeof(MyClass) &&
nb::type_align(py_type) == alignof(MyClass) &&
nb::type_info(py_type) == typeid(MyClass));

Given a type object representing a C++ type, we can create an uninitialized instance via nb::inst_alloc(). This
is an ordinary Python object that can, however, not (yet) be passed to bound C++ functions to prevent undefined
behavior. It must first be initialized.

nb::object py_inst = nb::inst_alloc(py_type);

We can confirm via nb::inst_check() that this newly created instance is managed by nanobind, that it has the
correct type in Python. Calling nb::inst_ready() reveals that the ready flag of the instance is set to false (i.e.,
it is still uninitialized).

assert(nb::inst_check(py_inst) &&
py_inst.type().is(py_type) &&
!nb::inst_ready(py_inst));

For simple plain old data (POD) types, the nb::inst_zero() function can be used to zero-initialize the object
and mark it as ready.

nb::inst_zero(py_inst);
assert(nb::inst_ready(py_inst));

We can destruct this default instance via nb::inst_destruct() and convert it back to non-ready status. This
memory region can then be reinitialized once more.

112

nanobind Documentation

nb::inst_destruct(py_inst);
assert(!nb::inst_ready(py_inst));

What follows is a more interesting example, where we use a lesser-known feature of C++ (the “placement new”
operator) to construct an instance in-place into the memory region allocated by nanobind.

// Get a C++ pointer to the uninitialized instance data
MyClass *ptr = nb::inst_ptr<MyClass>(py_inst);

// Perform an in-place construction of the C++ object at address 'ptr'
new (ptr) MyClass(/* constructor arguments go here */);

Following this constructor call, we must inform nanobind that the instance object is now fully constructed via
nb::inst_mark_ready(). When its reference count reaches zero, nanobind will then automatically call the in-
place destructor (MyClass::~MyClass).

nb::inst_mark_ready(py_inst);
assert(nb::inst_ready(py_inst));

Let’s destroy this instance once more manually (which will, again, call the C++ destructor and mark the Python
object as non-ready).

nb::inst_destruct(py_inst);

Another useful feature is that nanobind can copy- or move-construct py_inst from another instance of the same
type via nb::inst_copy() and nb::inst_move(). These functions call the C++ copy or move constructor and
transition py_inst back to ready status. This is equivalent to calling an in-place version of these constructors
followed by a call to nb::inst_mark_ready() but compiles to more compact code (the nb::class_<MyClass>
declaration had already created bindings for both constructors, and this simply calls those bindings).

if (copy_instance)
nb::inst_copy(/* dst = */ py_inst, /* src = */ some_other_instance);

else
nb::inst_move(/* dst = */ py_inst, /* src = */ some_other_instance);

Both functions assume that the destination object is uninitialized. Two alternative versions
nb::inst_replace_copy() and nb::inst_replace_move() destruct an initialized instance and replace it
with the contents of another by either copying or moving.

if (copy_instance)
nb::inst_replace_copy(/* dst = */ py_inst, /* src = */ some_other_instance);

else
nb::inst_replace_move(/* dst = */ py_inst, /* src = */ some_other_instance);

Note that these functions are all unsafe in the sense that they do not verify that their input arguments are valid. This
is done for performance reasons, and such checks (if needed) are therefore the responsibility of the caller. Functions
labeled nb::type_* should only be called with nanobind type objects, and functions labeled nb::inst_* should
only be called with nanobind instance objects.

The functions nb::type_check() and nb::inst_check() are exceptions to this rule: they accept any Python
object and test whether something is a nanobind type or instance object.

Two further functions nb::type_name() and nb::inst_name() determine the type name associated with a type
or instance thereof. These also accept non-nanobind types and instances.

113

https://en.wikipedia.org/wiki/Placement_syntax

nanobind Documentation

19.1 Even lower-level interface

Every nanobind object has two important flags that control its behavior:

1. ready: is the object fully constructed? If set to false, nanobind will raise an exception when the object is
passed to a bound C++ function.

2. destruct: Should nanobind call the C++ destructor when the instance is garbage collected?

The functions nb::inst_zero(), nb::inst_mark_ready(), nb::inst_move(), and nb::inst_copy() set
both of these flags to true, and nb::inst_destruct() sets both of them to false.

In rare situations, the destructor should not be invoked when the instance is garbage collected, for ex-
ample when working with a nanobind instance representing a field of a parent instance created using the
nb::rv_policy::reference_internal return value policy. The library therefore exposes two more functions
nb::inst_state() and nb::inst_set_state() that can be used to access them individually.

19.2 Referencing existing instances

The above examples used the function nb::inst_alloc() to allocate a Python object along with space to hold a
C++ instance associated with the binding py_type.

nb::object py_inst = nb::inst_alloc(py_type);

// Next, perform a C++ in-place construction into the
// address given by nb::inst_ptr<MyClass>(py_inst)
... omitted, see the previous examples ...

What if the C++ instance already exists? nanobind also supports this case via the nb::inst_reference() and
nb::inst_take_ownership() functions—in this case, the Python object references the existing memory region,
which is potentially (slightly) less efficient due to the need for an extra indirection.

MyClass *inst = new MyClass();

// Transfer ownership of 'inst' to Python (which will use a delete
// expression to free it when the Python instance is garbage collected)
nb::object py_inst = nb::inst_take_ownership(py_type, inst);

// We can also wrap C++ instances that should not be destructed since
// they represent offsets into another data structure. In this case,
// the optional 'parent' parameter ensures that 'py_inst' remains alive
// while 'py_subinst' exists to prevent undefined behavior.
nb::object py_subinst = nb::inst_reference(

py_field_type, &inst->field, /* parent = */ py_inst);

19.3 Supplemental type data

nanobind can stash supplemental data inside the type object of bound types. This involves the
nb::supplement<T>() class binding annotation to reserve space and nb::type_supplement<T>() to access
the reserved memory region.

An example use of this fairly advanced feature are libraries that register large numbers of different types (e.g. flavors
of tensors). A single generically implemented function can then query the supplemental data block to handle each
tensor type slightly differently.

Here is what this might look like in an implementation:

19.1. Even lower-level interface 114

nanobind Documentation

struct MyTensorMetadata {
bool stored_on_gpu;
// ..
// should be a POD (plain old data) type

};

// Register a new type MyTensor, and reserve space for sizeof(MyTensorMedadata)
nb::class_<MyTensor> cls(m, "MyTensor", nb::supplement<MyTensorMedadata>())

/// Mutable reference to 'MyTensorMedadata' portion in Python type object
MyTensorMedadata &supplement = nb::type_supplement<MyTensorMedadata>(cls);
supplement.stored_on_gpu = true;

The nb::supplement<T>() annotation implicitly also passes nb::is_final() to ensure that type objects with
supplemental data cannot be subclassed in Python.

nanobind requires that the specified type T be trivially default constructible. It zero-initializes the supplement
when the type is first created but does not perform any further custom initialization or destruction. You can fill the
supplement with different contents following the type creation, e.g., using the placement new operator.

The contents of the supplemental data are not directly visible to Python’s cyclic garbage collector, which creates
challenges if you want to reference Python objects. The recommended workaround is to store the Python objects
as attributes of the type object (in its __dict__) and store a borrowed PyObject* reference in the supplemental
data. If you use an attribute name that begins with the symbol @, then nanobind will prevent Python code from
rebinding or deleting the attribute after it has been set, making the borrowed reference reasonably safe.

19.3. Supplemental type data 115

CHAPTER

TWENTY

CUSTOMIZING TYPE CREATION

nanobind exposes a low-level interface to install custom type slots (PyType_Slot in the CPython API) in newly
constructed types. This provides an escape hatch to realize features that were not foreseen in the design of this
library.

To use this feature, specify the nb::type_slots() annotation when creating the type.

nb::class_<MyClass>(m, "MyClass", nb::type_slots(slots));

Here, slots should refer to an array of function pointers that are tagged with a corresponding slot identifier. For
example, here is an example function that overrides the addition operator so that it behaves like a multiplication.

PyObject *myclass_tp_add(PyObject *a, PyObject *b) {
return PyNumber_Multiply(a, b);

}

PyType_Slot slots[] = {
{ Py_nb_add, (void *) myclass_tp_add },
{ 0, nullptr }

};

The slots array specified in the previous nb::class_<MyClass>() declaration references the function
myclass_tp_add and is followed by a mandatory null terminator. Information on type slots can be found in
the CPython documentation sections covering type objects and type construction.

This example is contrived because it could have been accomplished using builtin features:

nb::class_<MyClass>(m, "MyClass")
.def("__add__",

[](const MyClass &a, const MyClass &b) { return a * b; },
nb::is_operator())

The next section introduces a more interesting use case.

20.1 Cyclic garbage collection

Python tracks the lifetime of objects using an approach known as reference counting. An object can be safely
deconstructed once it is no longer referenced from elsewhere, which happens when its reference count reaches
zero.

This mechanism is simple and efficient, but it breaks down when objects form reference cycles. For example,
consider the following data structure

struct Wrapper {
std::shared_ptr<Wrapper> value;

};

116

https://docs.python.org/3/c-api/type.html#c.PyType_Slot
https://docs.python.org/3/c-api/typeobj.html
https://docs.python.org/3/c-api/type.html

nanobind Documentation

with associated bindings

nb::class_<Wrapper>(m, "Wrapper")
.def(nb::init<>())
.def_rw("value", &Wrapper::value);

If we instantiate this class with a cycle, it can never be reclaimed (even when Python shuts down and is supposed
to free up all memory):

>>> a = my_ext.Wrapper()
>>> a.value = a
>>> del a

nanobind will loudly complain about this when the Python interpreter shuts down:

>>> exit()
nanobind: leaked 1 instances!
nanobind: leaked 1 types!
- leaked type "my_ext.Wrapper"
nanobind: leaked 3 functions!
- leaked function "<anonymous>"
- leaked function "__init__"
- leaked function "<anonymous>"
nanobind: this is likely caused by a reference counting issue in the binding code.

The leaked Wrapper instance a references the Wrapper type, which in turn references function definitions, causing
a longer sequence of warnings.

Python provides a cyclic garbage collector that can in principle solve this problem. To operate correctly, it requires
information about how objects are connected to each other.

We can provide a tp_traverse type slot that walks through the object graph to inform the cyclic GC, and a
tp_clear slot to break any detected reference cycles:

int wrapper_tp_traverse(PyObject *self, visitproc visit, void *arg) {
// Retrieve a pointer to the C++ instance associated with 'self' (never fails)
Wrapper *w = nb::inst_ptr<Wrapper>(self);

// If w->value has an associated CPython object, return it.
// If not, value.ptr() will equal NULL, which is also fine.
nb::object value = nb::find(w->value);

// Inform the Python GC about the instance (if non-NULL)
Py_VISIT(value.ptr());

return 0;
}

int wrapper_tp_clear(PyObject *self) {
// Retrieve a pointer to the C++ instance associated with 'self' (never fails)
Wrapper *w = nb::inst_ptr<Wrapper>(self);

// Clear the cycle!
w->value.reset();

return 0;
}

// Slot data structure referencing the above two functions
(continues on next page)

20.1. Cyclic garbage collection 117

nanobind Documentation

(continued from previous page)

PyType_Slot slots[] = {
{ Py_tp_traverse, (void *) wrapper_tp_traverse },
{ Py_tp_clear, (void *) wrapper_tp_clear },
{ 0, nullptr }

};

The type visitproc and macro Py_VISIT() are part of the Python C API.

The expression nb::inst_ptr<Wrapper>(self) efficiently returns the C++ instance associated with a Python
object and is explained in the documentation about nanobind’s low level interface.

Note the use of the nb::find() function, which behaves like nb::cast() by returning the Python object associ-
ated with a C++ instance. The main difference is that nb::cast() will create the Python object if it doesn’t exist,
while nb::find() returns a nullptr object in that case.

To activate this machinery, the Wrapper type bindings must be made aware of these extra type slots:

nb::class_<Wrapper>(m, "Wrapper", nb::type_slots(slots))

With this change, the cycle can be garbage-collected, and the leak warnings disappear.

20.2 Reference cycles involving functions

What if our wrapper class from the previous example instead stored a function object?

struct Wrapper {
std::function<void(void)> value;

};

It may not be immediately obvious, but functions are one of the main sources of reference cycles! For example, in
Python we could write

>>> a = my_ext.Wrapper()
>>> a.value = lambda: print(a)

This function is actually a function closure because it references external variable state (its body accesses a).
This creates an inter-language cycle Wrapper → function (itself wrapped in std::function<void(void)>)
→ Wrapper.

Such cycles are extremely common when Python-based callbacks can be installed in C++ classes. An example
would be a callback handler triggered by a button press in a GUI framework. It is important to detect and handle
such cycles.

When given a std::function<> instance, nb::find() retrieves the associated Python function object (if
present), which means that the previous wrapper_tp_traverse() traversal function continues to work without
changes. The tp_clear slot requires small touch-ups:

int wrapper_tp_clear(PyObject *self) {
Wrapper *w = nb::inst_ptr<Wrapper>(self);
w->value = nullptr;
return 0;

}

That’s it!

20.2. Reference cycles involving functions 118

https://en.wikipedia.org/wiki/Closure_(computer_programming)

CHAPTER

TWENTYONE

C++ API REFERENCE (CORE)

21.1 Macros

NB_MODULE(name, variable)
This macro creates the entry point that will be invoked when the Python interpreter imports an extension
module. The module name is given as the fist argument and it should not be in quotes. It must match the
module name given to the nanobind_add_module() function in the CMake build system.

The second macro argument defines a variable of type module_. The body of the declaration typically
contains a sequence of operations that populate the module variable with contents.

NB_MODULE(example, m) {
m.doc() = "Example module";

// Add bindings here
m.def("add", []() {

return "Hello, World!";
});

}

NB_MAKE_OPAQUE(T)
The macro registers a partial template specialization pattern for the type T that marks it as opaque, meaning
that nanobind won’t try to run its type casting template machinery on it.

This is useful when trying to register a binding for T that is simultaneously also covered by an existing type
caster.

This macro should be used at the top level (outside of namespaces and program code).

21.2 Python object API

Nanobind ships with a wide range of Python wrapper classes like object, list, etc. Besides class-specific opera-
tions (e.g., list::append()), these classes also implement core operations that can be performed on any Python
object. Since it would be tedious to implement this functionality over and over again, it is realized by the following
mixin class that lives in the nanobind::detail namespace.

template<typename Derived>
class api

This mixin class adds common functionality to various nanobind types using the curiously recurring template
pattern (CRTP). The only requirement for the Derived template parameter is that it implements the member
function PyObject *ptr() const that gives access to the underlying Python object pointer.

Derived &derived()
Obtain a mutable reference to the derived class.

119

https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern
https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern

nanobind Documentation

const Derived &derived() const
Obtain a const reference to the derived class.

handle inc_ref() const
Increases the reference count and returns a reference to the Python object.

handle dec_ref() const
Decreases the reference count and returns a reference to the Python object.

iterator begin() const
Return a forward iterator analogous to iter() in Python. The object must be a collection that supports
the iteration protocol. This interface provides a generic iterator that works any type of Python object.
The tuple, list, and dict wrappers provide more efficient specialized alternatives.

iterator end() const
Return a sentinel that ends the iteration.

handle type() const
Return a handle to the underlying Python type object.

operator handle() const
Return a handle wrapping the underlying PyObject* pointer.

detail::accessor<obj_attr> attr(handle key) const
Analogous to self.key in Python, where key is a Python object. The result is wrapped in an
accessor so that it can be read and written.

detail::accessor<str_attr> attr(const char *key) const
Analogous to self.key in Python, where key is a C-style string. The result is wrapped in an accessor
so that it can be read and written.

detail::accessor<str_attr> doc() const
Analogous to self.__doc__. The result is wrapped in an accessor so that it can be read and written.

detail::accessor<obj_item> operator[](handle key) const
Analogous to self[key] in Python, where key is a Python object. The result is wrapped in an
accessor so that it can be read and written.

detail::accessor<str_item> operator[](const char *key) const
Analogous to self[key] in Python, where key is a C-style string. The result is wrapped in an
accessor so that it can be read and written.

template<typename T, enable_if_t<std::is_arithmetic_v<T>> = 1>
detail::accessor<num_item> operator[](T key) const

Analogous to self[key] in Python, where key is an arithmetic type (e.g., an integer). The result is
wrapped in an accessor so that it can be read and written.

template<rv_policy policy = rv_policy::automatic_reference, typename ...Args>
object operator()(Args&&... args) const

Assuming the Python object is a function or implements the __call__ protocol, operator()() in-
vokes the underlying function, passing an arbitrary set of parameters, while expanding any detected
variable length argument and keyword argument packs. The result is returned as an object and may
need to be converted back into a Python object using cast().

Type conversion is performed using the return value policy policy

When type conversion of arguments or return value fails, the function raises a cast_error. When the
Python function call fails, it instead raises a python_error.

args_proxy operator*() const
Given a a tuple or list, this helper function performs variable argument list unpacking in function calls
resembling the * operator in Python. Applying operator*() twice yields ** keyword argument un-
packing for dictionaries.

21.2. Python object API 120

nanobind Documentation

bool is(handle value) const
Analogous to self is value in Python.

bool is_none() const
Analogous to self is None in Python.

bool is_type() const
Analogous to isinstance(self, type) in Python.

bool is_valid() const
Checks if this wrapper contains a valid Python object (in the sense that the PyObject * pointer is
non-null).

template<typename T>
bool equal(const api<T> &other)

Equivalent to self == other in Python.

template<typename T>
bool not_equal(const api<T> &other)

Equivalent to self != other in Python.

template<typename T>
bool operator<(const api<T> &other)

Equivalent to self < other in Python.

template<typename T>
bool operator<=(const api<T> &other)

Equivalent to self <= other in Python.

template<typename T>
bool operator>(const api<T> &other)

Equivalent to self > other in Python.

template<typename T>
bool operator>=(const api<T> &other)

Equivalent to self >= other in Python.

object operator-()
Equivalent to -self in Python.

object operator~()
Equivalent to ~self in Python.

template<typename T>
object operator+(const api<T> &other)

Equivalent to self + other in Python.

template<typename T>
object operator-(const api<T> &other)

Equivalent to self - other in Python.

template<typename T>
object operator*(const api<T> &other)

Equivalent to self * other in Python.

template<typename T>
object operator/(const api<T> &other)

Equivalent to self / other in Python.

template<typename T>

21.2. Python object API 121

nanobind Documentation

object floor_div(const api<T> &other)
Equivalent to self // other in Python.

template<typename T>
object operator|(const api<T> &other)

Equivalent to self | other in Python.

template<typename T>
object operator&(const api<T> &other)

Equivalent to self & other in Python.

template<typename T>
object operator^(const api<T> &other)

Equivalent to self ^ other in Python.

template<typename T>
object operator<<(const api<T> &other)

Equivalent to self << other in Python.

template<typename T>
object operator>>(const api<T> &other)

Equivalent to self >> other in Python.

template<typename T>
object operator+=(const api<T> &other)

Equivalent to self += other in Python. Note that the api version of the in-place operator does not
update the self reference, which may lead to unexpected results when working with immutable types
that return their result instead of updating self.

The object class and subclasses override the in-place operators to achieve more intuitive behavior.

template<typename T>
object operator-=(const api<T> &other)

Equivalent to self -= other in Python. See operator+=() for limitations.

template<typename T>
object operator*=(const api<T> &other)

Equivalent to self *= other in Python. See operator+=() for limitations.

template<typename T>
object operator/=(const api<T> &other)

Equivalent to self /= other in Python. See operator+=() for limitations.

template<typename T>
object operator|=(const api<T> &other)

Equivalent to self |= other in Python. See operator+=() for limitations.

template<typename T>
object operator&=(const api<T> &other)

Equivalent to self &= other in Python. See operator+=() for limitations.

template<typename T>
object operator^=(const api<T> &other)

Equivalent to self ^= other in Python. See operator+=() for limitations.

template<typename T>
object operator<<=(const api<T> &other)

Equivalent to self <<= other in Python. See operator+=() for limitations.

template<typename T>

21.2. Python object API 122

nanobind Documentation

object operator>>=(const api<T> &other)
Equivalent to self >>= other in Python. See operator+=() for limitations.

template<typename Impl>
class accessor

This helper class facilitates attribute and item access. Casting an accessor to a handle or object subclass
causes a corresponding call to __getitem__ or __getattr__ depending on the template argument Impl.
Assigning a handle or object subclass causes a call to __setitem__ or __setattr__.

21.3 Handles and objects

nanobind provides two styles of Python object wrappers: classes without reference counting deriving from handle,
and reference-counted wrappers deriving from object. Reference counting bugs can be really tricky to track
down, hence it is recommended that you always prefer object-style wrappers unless there are specific reasons
that warrant the use of raw handles.

21.3.1 Without reference counting

class handle : public detail::api<handle>
This class provides a thin wrapper around a raw PyObject * pointer. Its main purpose is to intercept various
C++ operations and convert them into Python C API calls. It does not do any reference counting and can be
somewhat unsafe to use.

handle() = default
Default constructor. Creates an invalid handle wrapping a null pointer. (detail::api::is_valid()
is false)

handle(const handle&) = default
Default copy constructor.

handle(handle&&) = default
Default move constructor.

handle(const PyObject *o)
Initialize a handle from a Python object pointer. Does not change the reference count of o.

handle(const PyTypeObject *o)
Initialize a handle from a Python type object pointer. Does not change the reference count of o.

handle &operator=(const handle&) = default
Default copy assignment operator.

handle &operator=(handle&&) = default
Default move assignment operator.

explicit operator bool() const
Check if the handle refers to a valid Python object. Equivalent to detail::api::is_valid()

handle inc_ref() const noexcept
Increases the reference count and returns a reference to the Python object. Never raises an exception.

handle dec_ref() const noexcept
Decreases the reference count and returns a reference to the Python object. Never raises an exception.

PyObject *ptr() const
Return the underlying PyObject* pointer.

21.3. Handles and objects 123

nanobind Documentation

21.3.2 With reference counting

class object : public handle
This class provides a convenient RAII wrapper around a PyObject* pointer. Like handle, it intercepts
various C++ operations and converts them into Python C API calls.

The main difference to handle is that it uses reference counting to keep the underlying Python object alive.

Use the borrow() and steal() functions to create an object from a handle or PyObject* pointer.

object() = default
Default constructor. Creates an invalid object wrapping a null pointer. (detail::api::is_valid()
is false)

object(object &&o)
Move constructor. Steals the object from o without changing its reference count.

object(const object &o)
Copy constructor. Acquires a new reference to o (if valid).

~object()

Decrease the reference count of the referenced Python object (if valid).

object &operator=(object &&o)
Move assignment operator. Decreases the reference count of the currently held object (if valid) and
steals the object from o without changing its reference count.

object &operator=(const object &o)
Copy assignment operator. Decreases the reference count of the currently held object (if valid) and
acquires a new reference to the object o (if valid).

void reset()
Decreases the reference count of the currently held object (if valid) and resets the internal pointer to
nullptr.

handle release()
Resets the internal pointer to nullptr and returns its previous contents as a handle. This operation
does not change the object’s reference count and should be used carefully.

template<typename T>
object &operator+=(const api<T> &other)

Equivalent to self += other in Python.

template<typename T>
object &operator-=(const api<T> &other)

Equivalent to self -= other in Python.

template<typename T>
object &operator*=(const api<T> &other)

Equivalent to self *= other in Python.

template<typename T>
object &operator/=(const api<T> &other)

Equivalent to self /= other in Python.

template<typename T>
object &operator|=(const api<T> &other)

Equivalent to self |= other in Python.

template<typename T>

21.3. Handles and objects 124

https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization

nanobind Documentation

object &operator&=(const api<T> &other)
Equivalent to self &= other in Python.

template<typename T>
object &operator^=(const api<T> &other)

Equivalent to self ^= other in Python.

template<typename T>
object &operator<<=(const api<T> &other)

Equivalent to self <<= other in Python.

template<typename T>
object &operator>>=(const api<T> &other)

Equivalent to self >>= other in Python.

template<typename T = object>
T borrow(handle h)

Create a reference-counted Python object wrapper of type T from a raw handle or PyObject * pointer. The
target type T must be object (the default) or one of its derived classes. The function does not perform any
conversions or checks—it is up to the user to make sure that the target type is correct.

The function borrows a reference, which means that it will increase the reference count while constructing
T.

For example, consider the Python C API function PyList_GetItem(), whose documentation states that it
returns a borrowed reference. An interface between this API and nanobind could look as follows:

PyObject* list = ...;
Py_ssize_t index = ...;
nb::object o = nb::borrow(PyList_GetItem(obj, index));

Using steal() in this setting is incorrect and would lead to a reference underflow.

template<typename T = object>
T steal(handle h)

Create a reference-counted Python object wrapper of type T from a raw handle or PyObject * pointer. The
target type T must be object (the default) or one of its derived classes. The function does not perform any
conversions or checks—it is up to the user to make sure that the target type is correct.

The function steals a reference, which means that constructing T leaves the object’s reference count un-
changed.

For example, consider the Python C API function PyObject_Str(), whose documentation states that it returns
a new reference. An interface between this API and nanobind could look as follows:

PyObject* value = ...;
nb::object o = nb::steal(PyObject_Str(value));

Using borrow() in this setting is incorrect and would lead to a reference leak.

21.4 Attribute access

bool hasattr(handle h, const char *key) noexcept
Check if the given object has an attribute string key. The function never raises an exception and returns
false in case of an internal error.

Equivalent to hasattr(h, key) in Python.

21.4. Attribute access 125

https://docs.python.org/3/c-api/list.html#c.PyList_GetItem
https://docs.python.org/3/c-api/object.html#c.PyObject_Str

nanobind Documentation

bool hasattr(handle h, handle key) noexcept
Check if the given object has a attribute represented by the Python object key. The function never raises an
exception and returns false in case of an internal error.

Equivalent to hasattr(h, key) in Python.

object getattr(handle h, const char *key)
Equivalent to h.key and getattr(h, key) in Python. Raises python_error if the operation fails.

object getattr(handle h, handle key)
Equivalent to h.key and getattr(h, key) in Python. Raises python_error if the operation fails.

object getattr(handle h, const char *key, handle def) noexcept
Equivalent to getattr(h, key, def) in Python. Never raises an exception and returns def when the
operation fails, or when the desired attribute could not be found.

object getattr(handle h, handle key, handle def) noexcept
Equivalent to getattr(h, key, def) in Python. Never raises an exception and returns def when the
operation fails, or when the desired attribute could not be found.

void setattr(handle h, const char *key, handle value)
Equivalent to h.key = value and setattr(h, key, value) in Python. Raises python_error if the
operation fails.

void setattr(handle h, handle key, handle value)
Equivalent to h.key = value and setattr(h, key, value) in Python. Raises python_error if the
operation fails.

void delattr(handle h, const char *key)
Equivalent to del h.key and delattr(h, key) in Python. Raises python_error if the operation fails.

void delattr(handle h, handle key)
Equivalent to del h.key and delattr(h, key) in Python. Raises python_error if the operation fails.

template<typename T>
void del(detail::accessor<T>&)

Remove an element from a sequence or mapping. The C++ statement

nb::del(o[key]);

is equivalent to del o[key] in Python.

When the element cannot be removed, the function will raise python_error wrapping either a Python
IndexError (for sequence types) or a KeyError (for mapping types).

template<typename T>
void del(detail::accessor<T>&&)

Rvalue equivalent of the above expression.

21.5 Size queries

size_t len(handle h)
Equivalent to len(h) in Python. Raises python_error if the operation fails.

size_t len(const tuple &t)
Equivalent to len(t) in Python. Optimized variant for tuples.

size_t len(const list &l)
Equivalent to len(l) in Python. Optimized variant for lists.

21.5. Size queries 126

nanobind Documentation

size_t len(const dict &d)
Equivalent to len(d) in Python. Optimized variant for dictionaries.

size_t len(const set &d)
Equivalent to len(d) in Python. Optimized variant for sets.

size_t len_hint(handle h)
Equivalent to operator.length_hint(h) in Python. Raises python_error if the operation fails.

21.6 Type queries

template<typename T>
isinstance(handle h)

Checks if the Python object h represents a valid instance of the C++ type T. This works for bound C++
classes, basic types (int, bool, etc.), and Python type wrappers (list, dict, module_, etc.).

Note: the check even works when T involves a type caster (e.g., an STL types like std::vector<float>).
However, this involve a wasteful attempt to convert the object to C++. It may be more efficient to just perform
the conversion using cast() and catch potential raised exceptions.

template<typename T>
handle type() noexcept

Returns the Python type object associated with the C++ type T. When the type not been bound via nanobind,
the function returns an invalid handle (detail::api::is_valid() is false).

Note: in contrast to the isinstance() function above, builtin types, type wrappers, and types handled using
type casters, are not supported.

21.7 Wrapper classes

class tuple : public object
Wrapper class representing Python tuple instances.

Use the standard operator[] C++ operator with an integer argument to read tuple elements (the bindings
for this operator are provided by the parent class and not listed here). Once created, the set is immutable and
its elements cannot be replaced.

Use the make_tuple() function to create new tuples.

tuple()

Create an empty tuple

tuple(handle h)
Attempt to convert a given Python object into a tuple. Analogous to the expression tuple(h) in
Python.

size_t size() const
Return the number of tuple elements.

detail::fast_iterator begin() const
Return a forward iterator analogous to iter() in Python. The function overrides a generic version in
detail::api and is more efficient for tuples.

detail::fast_iterator end() const
Return a sentinel that ends the iteration.

template<typename T, enable_if_t<std::is_arithmetic_v<T>> = 1>

21.6. Type queries 127

nanobind Documentation

detail::accessor<num_item_tuple> operator[](T key) const
Analogous to self[key] in Python, where key is an arithmetic type (e.g., an integer). The result is
wrapped in an accessor so that it can be read and converted. Write access is not possible.

The function overrides the generic version in detail::api and is more efficient for tuples.

class list : public object
Wrapper class representing Python list instances.

Use the standard operator[] C++ operator with an integer argument to read and write list elements (the
bindings for this operator are provided by the parent class and not listed here).

Use the nb::del function to remove elements.

list()

Create an empty list

list(handle h)
Attempt to convert a given Python object into a list. Analogous to the expression list(h) in Python.

size_t size() const
Return the number of list elements.

template<typename T>
void append(T &&value)

Append an element to the list. When T does not already represent a wrapped Python object, the function
performs a cast.

template<typename T>
void insert(Py_ssize_t index, T &&value)

Insert an element to the list (at index index, which may also be negative). When T does not already
represent a wrapped Python object, the function performs a cast.

void clear()
Clear the list entries.

void extend(handle h)
Analogous to the .extend(h) method of list in Python.

void sort()
Analogous to the .sort() method of list in Python.

void reverse()
Analogous to the .reverse() method of list in Python.

template<typename T, enable_if_t<std::is_arithmetic_v<T>> = 1>
detail::accessor<num_item_list> operator[](T key) const

Analogous to self[key] in Python, where key is an arithmetic type (e.g., an integer). The result is
wrapped in an accessor so that it can be read and written.

The function overrides the generic version in detail::api and is more efficient for lists.

detail::fast_iterator begin() const
Return a forward iterator analogous to iter() in Python. The operator provided here overrides the
generic version in detail::api and is more efficient for lists.

detail::fast_iterator end() const
Return a sentinel that ends the iteration.

class dict : public object
Wrapper class representing Python dict instances.

Use the standard operator[] C++ operator to read and write dictionary elements (the bindings for this
operator are provided by the parent class and not listed here).

21.7. Wrapper classes 128

nanobind Documentation

Use the nb::del function to remove elements.

dict()

Create an empty dictionary

size_t size() const
Return the number of dictionary elements.

template<typename T>
bool contains(T &&key) const

Check whether the dictionary contains a particular key. When T does not already represent a wrapped
Python object, the function performs a cast.

detail::dict_iterator begin() const
Return an item iterator that returns std::pair<handle, handle> key-value pairs analogous to
iter(dict.items()) in Python.

detail::dict_iterator end() const
Return a sentinel that ends the iteration.

list keys() const
Return a list containing all dictionary keys.

list values() const
Return a list containing all dictionary values.

list items() const
Return a list containing all dictionary items as (key, value) pairs.

void clear()
Clear the contents of the dictionary.

void update(handle h)
Analogous to the .update(h) method of dict in Python.

class set : public object
Wrapper class representing Python set instances.

set()

Create an empty set

set(handle h)
Attempt to convert a given Python object into a set. Analogous to the expression set(h) in Python.

size_t size() const
Return the number of set elements.

template<typename T>
void add(T &&key)

Add a key to the set. When T does not already represent a wrapped Python object, the function performs
a cast.

template<typename T>
bool contains(T &&key) const

Check whether the set contains a particular key. When T does not already represent a wrapped Python
object, the function performs a cast.

void clear()
Clear the contents of the set.

template<typename T>

21.7. Wrapper classes 129

nanobind Documentation

bool discard(T &&key)
Analogous to the .discard(h) method of the set type in Python. Returns true if the item was
deleted successfully, and false if the value was not present. When T does not already represent a
wrapped Python object, the function performs a cast.

class module_ : public object
Wrapper class representing Python module instances. The underscore at the end disambiguates the class
name from the C++20 module declaration.

template<typename Func, typename ...Extra>
module_ &def(const char *name, Func &&f, const Extra&... extra)

Bind the function f to the identifier name within the module. Returns a reference to *this so that
longer sequences of binding declarations can be chained, as in m.def(...).def(...);. The variable
length extra parameter can be used to pass docstrings and other function binding annotations.

Example syntax:

void test() { printf("Hello world!"); }

NB_MODULE(example, m) {
// here, "m" is variable of type 'module_'.
m.def("test", &test, "A test function")
.def(...); // more binding declarations

}

module_ import_(const char *name)
Import the Python module with the specified name and return a reference to it. The underscore at the
end disambiguates the function name from the C++20 import statement.

Example usage:

nb::module_ np = nb::module_::import_("numpy");
nb::object np_array = np.attr("array");

module_ import_(handle name)
Import the Python module with the specified name and return a reference to it. In contrast to the version
above, this function expects a Python object as key.

module_ def_submodule(const char *name, const char *doc = nullptr)
Create a Python submodule within an existing module and return a reference to it. Can be chained
recursively.

Example usage:

NB_MODULE(example, m) {
nb::module_ m2 = m.def_submodule("sub", "A submodule of 'example'");
nb::module_ m3 = m2.def_submodule("subsub", "A submodule of 'example.sub'

↪");
}

class capsule : public object
Capsules are small opaque Python objects that wrap a C or C++ pointer and a cleanup routine.

capsule(const void *ptr, void (*cleanup)(void*) noexcept = nullptr)
Construct an unnamed capsule wrapping the pointer p. When the capsule is garbage collected, Python
will call the destructor cleanup (if provided) with the value of p.

capsule(const void *ptr, const char *name, void (*cleanup)(void*) noexcept = nullptr)
Construct a named capsule with name name wrapping the pointer p. When the capsule is garbage
collected, Python will call the destructor cleanup (if provided) with the value of p.

21.7. Wrapper classes 130

nanobind Documentation

const char *name() const
Return the capsule name (or nullptr when the capsule is unnamed)

void *data() const
Return the pointer wrapped by the capsule.

class bool_ : public object
This wrapper class represents Python bool instances.

int_(handle h)
Performs a boolean cast within Python. This is equivalent to the Python expression bool(h).

explicit bool_(bool value)
Convert an C++ boolean instance into a Python bool.

explicit operator bool() const
Extract the boolean value underlying this object.

class int_ : public object
This wrapper class represents Python int instances. It can handle large numbers requiring more than 64 bits
of storage.

int_(handle h)
Performs an integer cast within Python. This is equivalent to the Python expression int(h).

template<typename T, detail::enable_if_t<std::is_arithmetic_v<T>> = 0>
explicit int_(T value)

Convert an C++ arithmetic type into a Python integer.

template<typename T, detail::enable_if_t<std::is_arithmetic_v<T>> = 0>
explicit operator T() const

Convert a Python integer into a C++ arithmetic type.

class float_ : public object
This wrapper class represents Python float instances.

float_(handle h)
Performs an floating point cast within Python. This is equivalent to the Python expression float(h).

explicit float_(double value)
Convert an C++ double value into a Python float objecct

explicit operator double() const
Convert a Python float object into a C++ double value

class str : public object
This wrapper class represents Python unicode str instances.

str(handle h)
Performs a string cast within Python. This is equivalent equivalent to the Python expression str(h).

str(const char *s)
Convert a null-terminated C-style string in UTF-8 encoding into a Python string.

str(const char *s, size_t n)
Convert a C-style string in UTF-8 encoding of length n bytes into a Python string.

const char *c_str() const
Convert a Python string into a null-terminated C-style string with UTF-8 encoding.

Note: The C string will be deleted when the str instance is garbage collected.

template<typename ...Args>

21.7. Wrapper classes 131

nanobind Documentation

str format(Args&&... args)
C++ analog of the Python routine str.format. Can be called with positional and keyword arguments.

class bytes : public object
This wrapper class represents Python unicode bytes instances.

bytes(handle h)
Performs a cast within Python. This is equivalent equivalent to the Python expression bytes(h).

bytes(const char *s)
Convert a null-terminated C-style string encoding into a Python bytes object.

bytes(const char *s, size_t n)
Convert a null-terminated C-style string encoding of length n bytes into a Python bytes object.

const char *c_str() const
Convert a Python bytes object into a null-terminated C-style string.

size_t size() const
Return the size in bytes.

class type_object : public object
Wrapper class representing Python type instances.

class sequence : public object
Wrapper class representing arbitrary Python sequence types.

class mapping : public object
Wrapper class representing arbitrary Python mapping types.

template<typename T>
bool contains(T &&key) const

Check whether the map contains a particular key. When T does not already represent a wrapped Python
object, the function performs a cast.

list keys() const
Return a list containing all of the map’s keys.

list values() const
Return a list containing all of the map’s values.

list items() const
Return a list containing all of the map’s items as (key, value) pairs.

class iterator : public object
Wrapper class representing a Python iterator.

iterator &operator++()
Advance to the next element (pre-increment form).

iterator &operator++(int)
Advance to the next element (post-increment form).

handle operator*() const
Return the item at the current position.

handle operator->() const
Convenience routine for pointer-style access.

friend bool operator==(const iterator &a, const iterator &b);
Iterator equality comparison operator.

21.7. Wrapper classes 132

nanobind Documentation

friend bool operator!=(const iterator &a, const iterator &b);
Iterator inequality comparison operator.

class iterable : public object
Wrapper class representing an object that can be iterated upon (in the sense that calling iter() is valid).

class slice : public object
Wrapper class representing a Python slice object.

slice(handle start, handle stop, handle step)
Create the slice object given by slice(start, stop, step) in Python.

template<typename T, detail::enable_if_t<std::is_arithmetic_v<T>> = 0>
slice(T stop)

Create the slice object slice(stop), where stop is represented by a C++ integer type.

template<typename T, detail::enable_if_t<std::is_arithmetic_v<T>> = 0>
slice(T start, T stop)

Create the slice object slice(start, stop), where start and stop are represented by a C++ in-
teger type.

template<typename T, detail::enable_if_t<std::is_arithmetic_v<T>> = 0>
slice(T start, T stop, T step)

Create the slice object slice(start, stop, step), where start, stop, and step are represented
by a C++ integer type.

detail::tuple<Py_ssize_t, Py_ssize_t, Py_ssize_t, size_t> compute(size_t size) const
Adjust the slice to the size value of a given container. Returns a tuple containing (start, stop,
step, slice_length).

class ellipsis : public object
Wrapper class representing a Python ellipsis (...) object.

ellipsis()

Create a wrapper referencing the unique Python Ellipsis object.

class not_implemented : public object
Wrapper class representing a Python NotImplemented object.

not_implemented()

Create a wrapper referencing the unique Python NotImplemented object.

class callable : public object
Wrapper class representing a callable Python object.

class weakref : public object
Wrapper class representing a Python weak reference object.

explicit weakref(handle obj, handle callback = {})
Construct a new weak reference that points to obj. If provided, Python will invoke the callable
callback when obj expires.

class args : public tuple
Variable argument keyword list for use in function argument declarations.

class kwargs : public dict
Variable keyword argument keyword list for use in function argument declarations.

class any : public object
This wrapper class represents Python typing.Any-typed values. On the C++ end, this type is interchange-
able with object. The only difference is the type signature when used in function arguments and return
values.

21.7. Wrapper classes 133

https://docs.python.org/3/library/functions.html#object

nanobind Documentation

21.8 Parameterized wrapper classes

template<typename T>
class handle_t : public handle

Wrapper class representing a handle to a subclass of the C++ type T. It can be used to bind functions that
take the associated Python object in its wrapped form, while rejecting objects with a different type (i.e., it is
more discerning than handle, which accepts any Python object).

// Bind the class A
class A { int value; };
nb::class_<A>(m, "A");

// Bind a function that takes a Python object representing a 'A' instance
m.def("process_a", [](nb::handle_t<A> h) {

PyObject * a_py = h.ptr(); // PyObject* pointer to wrapper
A &a_cpp = nb::cast<A &>(h); // Reference to C++ instance

});

template<typename T>
class type_object_t : public type_object

Wrapper class representing a Python type object that is a subtype of the C++ type T. It can be used to bind
functions that only accept type objects satisfying this criterion (i.e., it is more discerning than type_object,
which accepts any Python type object).

21.9 Error management

nanobind provides a range of functionality to convert C++ exceptions into equivalent Python exceptions and raise
captured Python error state in C++. The exception class is also relevant in this context, but is listed in the
reference section on class binding.

struct error_scope
RAII helper class that temporarily stashes any existing Python error status. This is important when running
Python code in the context of an existing failure that must be processed (e.g., to generate an error message).

error_scope()

Stash the current error status (if any)

~error_scope()

Restore the stashed error status (if any)

struct python_error : public std::exception
Exception that represents a detected Python error status.

python_error()

This constructor may only be called when a Python error has occurred (PyErr_Occurred() must be
true). It creates a C++ exception object that represents this error and clears the Python error status.

python_error(const python_error&)

Copy constructor

python_error(python_error&&) noexcept
Move constructor

const char *what() noexcept
Return a stringified version of the exception. nanobind internally normalizes the exception and gen-
erates a traceback that is included as part of this string. This can be a relatively costly operation and
should only be used if all of this detail is actually needed.

21.8. Parameterized wrapper classes 134

nanobind Documentation

bool matches(handle exc) noexcept
Checks whether the exception has the same type as exc.

The argument to this function is usually one of the Standard Exceptions.

void restore() noexcept
Restore the error status in Python and clear the python_error contents. This may only be called once,
and you should not reraise the python_error in C++ afterward.

void discard_as_unraisable(handle context) noexcept
Pass the error to Python’s sys.unraisablehook(), which prints a traceback to sys.stderr by de-
fault but may be overridden. Like restore(), this consumes the error and you should not reraise the
exception in C++ afterward.

The context argument should be some object whose repr() helps identify the location of the error. The
default sys.unraisablehook() prints a traceback that begins with the text Exception ignored
in: followed by the result of repr(context).

Example use case: handling a Python error that occurs in a C++ destructor where you cannot raise a
C++ exception.

void discard_as_unraisable(const char *context) noexcept
Convenience wrapper around the above function, which takes a C-style string for the context argu-
ment.

handle type() const
Returns a handle to the exception type

handle value() const
Returns a handle to the exception value

object traceback() const
Returns a handle to the exception’s traceback object

class cast_error
The function cast() raises this exception to indicate that a cast was unsuccessful.

cast_error()

Constructor

class next_overload
Raising this special exception from a bound function informs nanobind that the function overload detected
incompatible inputs. nanobind will then try other overloads before reporting a TypeError.

This feature is useful when a multiple overloads of a function accept overlapping or identical input types
(e.g. object) and must run code at runtime to select the right overload.

You should probably write a thorough docstring that explicitly mentions the expected inputs in this case,
since the behavior won’t be obvious from the auto-generated function signature. It can be frustrating when
a function call fails with an error message stating that the provided arguments aren’t compatible with any
overload, when the associated error message suggests otherwise.

next_overload()

Constructor

class builtin_exception : public std::runtime_error
General-purpose class to propagate builtin Python exceptions from C++. A number of convenience functions
(see below) instantiate it.

builtin_exception stop_iteration(const char *what = nullptr)
Convenience wrapper to create a builtin_exception C++ exception instance that nanobind will re-raise
as a Python StopIteration exception boundary. when it crosses the C++↔ Python interface.

21.9. Error management 135

https://docs.python.org/3/c-api/exceptions.html#standard-exceptions
https://docs.python.org/3/library/sys.html#sys.unraisablehook
https://docs.python.org/3/library/sys.html#sys.stderr
https://docs.python.org/3/library/sys.html#sys.unraisablehook

nanobind Documentation

builtin_exception index_error(const char *what = nullptr)
Convenience wrapper to create a builtin_exception C++ exception instance that nanobind will re-raise
as a Python IndexError exception boundary. when it crosses the C++↔ Python interface.

builtin_exception key_error(const char *what = nullptr)
Convenience wrapper to create a builtin_exception C++ exception instance that nanobind will re-raise
as a Python KeyError exception boundary. when it crosses the C++↔ Python interface.

builtin_exception value_error(const char *what = nullptr)
Convenience wrapper to create a builtin_exception C++ exception instance that nanobind will re-raise
as a Python ValueError exception boundary. when it crosses the C++↔ Python interface.

builtin_exception type_error(const char *what = nullptr)
Convenience wrapper to create a builtin_exception C++ exception instance that nanobind will re-raise
as a Python TypeError exception boundary. when it crosses the C++↔ Python interface.

builtin_exception buffer_error(const char *what = nullptr)
Convenience wrapper to create a builtin_exception C++ exception instance that nanobind will re-raise
as a Python BufferError exception boundary. when it crosses the C++↔ Python interface.

builtin_exception import_error(const char *what = nullptr)
Convenience wrapper to create a builtin_exception C++ exception instance that nanobind will re-raise
as a Python ImportError exception boundary. when it crosses the C++↔ Python interface.

builtin_exception attribute_error(const char *what = nullptr)
Convenience wrapper to create a builtin_exception C++ exception instance that nanobind will re-raise
as a Python AttributeError exception boundary. when it crosses the C++↔ Python interface.

void register_exception_translator(void (*exception_translator)(const std::exception_ptr&, void*), void
*payload = nullptr)

Install an exception translator callback that will be invoked whenever nanobind’s function call dispatcher
catches a previously unknown C++ exception. This exception translator should follow a standard structure
of re-throwing an exception, catching a specific type, and converting this into a Python error status upon
“success”.

Here is an example for a hypothetical ZeroDivisionException.

register_exception_translator(
[](const std::exception_ptr &p, void * /*payload*/) {

try {
std::rethrow_exception(p);

} catch (const ZeroDivisionException &e) {
PyErr_SetString(PyExc_ZeroDivisionError, e.what());

}
}, nullptr /*payload*/);

Generally, you will want to use the more convenient exception binding interface provided by exception
class. This function provides an escape hatch for more specialized use cases.

void chain_error(handle type, const char *fmt, ...) noexcept
Raise a Python error of type type using the format string fmt interpreted by PyErr_FormatV.

If a Python error state was already set prior to calling this method, then the new error is chained on top of
the existing one. Otherwise, the function creates a new error without initializing its __cause__ field.

void raise_from(python_error &e, handle type, const char *fmt, ...)
Convenience wrapper around chain_error. It takes an existing Python error (e.g. caught in a catch block)
and creates an additional Python exception with the current error as cause. It then re-raises python_error.
The argument fmt is a printf-style format string interpreted by PyErr_FormatV.

Usage of this function is explained in the documentation section on exception chaining.

21.9. Error management 136

nanobind Documentation

void raise(const char *fmt, ...)
This function takes a printf-style format string with arguments and then raises a std::runtime_error
with the formatted string. The function has no dependence on Python, and nanobind merely includes it for
convenience.

void raise_type_error(const char *fmt, ...)
This function is analogous to raise(), except that it raises a builtin_exception that will convert into a
Python TypeError when crossing the language interface.

void raise_python_error()
This function should only be called if a Python error status was set by a prior operation, which should now
be raised as a C++ exception. The function is analogous to the statement throw python_error(); but
compiles into more compact code.

21.10 Casting

template<typename T, typename Derived>
T cast(const detail::api<Derived> &value, bool convert = true)

Convert the Python object value (typically a handle or a object subclass) into a C++ object of type T.

When the convert argument is set to true (the default), the implementation may also attempt implicit
conversions to perform the cast.

The function raises a cast_error when the conversion fails. See try_cast() for an alternative that never
raises.

template<typename T, typename Derived>
bool try_cast(const detail::api<Derived> &value, T &out, bool convert = true) noexcept

Convert the Python object value (typically a handle or a object subclass) into a C++ object of type T,
and store it in the output parameter out.

When the convert argument is set to true (the default), the implementation may also attempt implicit
conversions to perform the cast.

The function returns false when the conversion fails. In this case, the out parameter is left untouched. See
cast() for an alternative that instead raises an exception in this case.

template<typename T>
object cast(T &&value, rv_policy policy = rv_policy::automatic_reference)

Convert the C++ object value into a Python object. The return value policy policy is used to handle
ownership-related questions when a new Python object must be created.

The function raises a cast_error when the conversion fails.

template<typename T>
object find(const T &value) noexcept

Return the Python object associated with the C++ instance value. When no such object can be found, the
function it returns an invalid object (detail::api::is_valid() is false).

template<rv_policy policy = rv_policy::automatic, typename ...Args>
tuple make_tuple(Args&&... args)

Create a Python tuple from a sequence of C++ objects args.... The return value policy policy is used to
handle ownership-related questions when a new Python objects must be created.

The function raises a cast_error when the conversion fails.

21.10. Casting 137

nanobind Documentation

21.11 Common binding annotations

The following annotations can be specified in both function and class bindings.

struct scope

scope(handle value)
Captures the Python scope (e.g., a module_ or type_object) in which the function or class should
be registered.

21.12 Function binding annotations

The following annotations can be specified using the variable-length Extra parameter of module_::def(),
class_::def(), cpp_function(), etc.

struct name

name(const char *value)
Specify this annotation to override the name of the function.

nanobind will internally copy the string when creating a function binding, hence dynamically generated
arguments with a limited lifetime are legal.

struct arg
Function argument annotation to enable keyword-based calling, default arguments, passing None, and im-
plicit conversion hints. Note that when a function argument should be annotated, you must specify annota-
tions for all arguments of that function.

Example use:

m.def("add", [](int a, int b) { return a + b; }, nb::arg("a"), nb::arg("b"));

It is usually convenient to add the following using declaration to your binding code.

using namespace nb::literals;

In this case, the argument annotations can be shortened:

m.def("add", [](int a, int b) { return a + b; }, "a"_a, "b"_a);

explicit arg(const char *name = nullptr)
Create a function argument annotation. The name is optional.

template<typename T>
arg_v operator=(T &&value) const

Assign a default value to the argument.

arg &none(bool value = true)
Set a flag noting that the function argument accepts None. Can only be used for python wrapper types
(e.g. handle, int_) and types that have been bound using class_. You cannot use this to implement
functions that accept null pointers to builtin C++ types like int *i = nullptr.

arg &noconvert(bool value = true)
Set a flag noting that implicit conversion should never be performed for this function argument.

arg &sig(const char *sig)
Override the signature of the default argument value. This is useful when the argument value is unusu-
ally complex so that the default method to explain it in docstrings and stubs (str(value)) does not
produce acceptable output.

21.11. Common binding annotations 138

nanobind Documentation

struct is_method
Indicate that the bound function is a method.

struct is_operator
Indicate that the bound operator represents a special double underscore method (__add__, __radd__, etc.)
that implements an arithmetic operation.

When a bound functions with this annotation is called with incompatible arguments, it will return
NotImplemented rather than raising a TypeError.

struct is_implicit
Indicate that the bound constructor can be used to perform implicit conversions.

template<typename ...Ts>
struct call_guard

Invoke the call guard(s) Ts when the bound function executes. The RAII helper gil_scoped_release is
often combined with this feature.

template<size_t Nurse, size_t Patient>
struct keep_alive

Following evaluation of the bound function, keep the object referenced by index Patient alive as long as
the object with index Nurse exists. This uses the following indexing convention:

• Index 0 refers to the return value of methods. It should not be used in constructors or functions that do
not return a result.

• Index 1 refers to the first argument. In methods and constructors, index 1 refers to the implicit this
pointer, while regular arguments begin at index 2.

The annotation has the following runtime characteristics:

• It does nothing when the nurse or patient object are None.

• It raises an exception when the nurse object is neither weak-referenceable nor an instance of a binding
created via nb::class_<..>.

Two additional caveats regarding keep_alive are noteworthy:

• It usually doesn’t make sense to specify a Nurse or Patient for an argument or return value handled
by a type caster (e.g., a STL vector handled via the include directive #include <nanobind/stl/
vector.h>). That’s because type casters copy-convert the Python object into an equivalent C++ object,
whose lifetime is decoupled from the original Python object. However, the keep_alive annotation
only affects the lifetime of Python objects and not their C++ copy.

• Dispatching a Python→ C++ function call may require the implicit conversion of function arguments.
In this case, the objects passed to the C++ function differ from the originally specified arguments. The
Nurse and Patient annotation always refer to the final object following implicit conversion.

struct sig

sig(const char *value)
This is both a class and a function binding annotation.

1. When used in functions bindings, it provides complete control over the function’s type signature
by replacing the automatically generated version with value. You can use it to add or change
arguments and return values, tweak how default values are rendered, and add custom decorators.

Here is an example:

nb::def("function_name", &function_name,
nb::sig(

"@decorator(decorator_args..)\n
"def function_name(arg_1: type_1 = def_1, ...) -> ret"

));

21.12. Function binding annotations 139

nanobind Documentation

2. When used in class bindings, the annotation enables complete control over how the class is ren-
dered by nanobind’s stubgen program. You can use it add decorators, specify typing.TypeVar-
parameterized base classes, metaclasses, etc.

Here is an example:

nb::class_<Class>(m, "Class",
nb::sig(

"@decorator(decorator_args..)\n"
"class Class(Base1[T], Base2, meta=Meta)"

));

Deviating significantly from the nanobind-generated signature likely means that the class or function
declaration is a lie, but such lies can be useful to type-check complex binding projects.

Specifying decorators isn’t required—the above are just examples to show that this is possible.

nanobind will internally copy the signature during function/type creation, hence dynamically generated
strings with a limited lifetime are legal.

The provided string should be valid Python signature, but without a trailing colon (":") or trailing
newline. Furthermore, nanobind analyzes the string and expects to find the name of the function or
class on the last line between the "def" / "class" prefix and the opening parenthesis.

For function bindings, this name must match the specified function name in .def("name", ..)-style
binding declarations, and for class bindings, the specified name must match the name argument of
nb::class_.

enum class rv_policy
A return value policy determines the question of ownership when a bound function returns a previously
unknown C++ instance that must now be converted into a Python object.

Return value policies apply to functions that return values handled using class bindings, which means that
their Python equivalent was registered using class_<...>. They are ignored in most other cases. One
exception are STL types handled using type casters (e.g. std::vector<T>), which contain a nested type T
handled using class bindings. In this case, the return value policy also applies recursively.

A return value policy is unnecessary when the type itself clarifies ownership (e.g., std::unique_ptr<T>,
std::shared_ptr<T>, a type with intrusive reference counting).

The following policies are available (where automatic is the default). Please refer to the return value policy
section of the main documentation, which clarifies the list below using concrete examples.

enumerator take_ownership
Create a Python object that wraps the existing C++ instance and takes full ownership of it. No copies are
made. Python will call the C++ destructor and delete operator when the Python wrapper is garbage
collected at some later point. The C++ side must relinquish ownership and is not allowed to destruct
the instance, or undefined behavior will ensue.

enumerator copy
Copy-construct a new Python object from the C++ instance. The new copy will be owned by Python,
while C++ retains ownership of the original.

enumerator move
Move-construct a new Python object from the C++ instance. The new object will be owned by Python,
while C++ retains ownership of the original (whose contents were likely invalidated by the move op-
eration).

enumerator reference
Create a Python object that wraps the existing C++ instance without taking ownership of it. No copies
are made. Python will never call the destructor or delete operator, even when the Python wrapper is
garbage collected.

21.12. Function binding annotations 140

nanobind Documentation

enumerator reference_internal
A safe extension of the reference policy for methods that implement some form of attribute access.
It creates a Python object that wraps the existing C++ instance without taking ownership of it. Addi-
tionally, it adjusts reference counts to keeps the method’s implicit self argument alive until the newly
created object has been garbage collected.

enumerator none
This is the most conservative policy: it simply refuses the cast unless the C++ instance already has a
corresponding Python object, in which case the question of ownership becomes moot.

enumerator automatic
This is the default return value policy, which falls back to take_ownership when the return value is
a pointer, move when it is a rvalue reference, and copy when it is a lvalue reference.

enumerator automatic_reference
This policy matches automatic but falls back to reference when the return value is a pointer.

struct kw_only
Indicate that all following function parameters are keyword-only. This may only be used if you supply an
arg annotation for each parameters, because keyword-only parameters are useless if they don’t have names.
For example, if you write

int some_func(int one, const char* two);

m.def("some_func", &some_func,
nb::arg("one"), nb::kw_only(), nb::arg("two"));

then in Python you can write some_func(42, two="hi"), or some_func(one=42, two="hi"), but not
some_func(42, "hi").

Just like in Python, any parameters appearing after variadic *args are implicitly keyword-only. You don’t
need to include the kw_only annotation in this case, but if you do include it, it must be in the correct position:
immediately after the arg annotation for the variadic *args parameter.

template<typename T>
struct for_getter

When defining a property with a getter and a setter, you can use this to only pass a function binding attribute
to the getter part. An example is shown below.

nb::class_<MyClass>(m, "MyClass")
.def_prop_rw("value", &MyClass::value,

nb::for_getter(nb::sig("def value(self, /) -> int")),
nb::for_setter(nb::sig("def value(self, value: int, /) -> None")),
nb::for_getter("docstring for getter"),
nb::for_setter("docstring for setter"));

template<typename T>
struct for_setter

Analogous to for_getter, but for setters.

21.12. Function binding annotations 141

nanobind Documentation

21.13 Class binding annotations

The following annotations can be specified using the variable-length Extra parameter of the constructor
class_::class_().

Besides the below options, also refer to the sig which is usable in both function and class bindings. It can be used
to override class declarations in generated stubs,

struct is_final
Indicate that a type cannot be subclassed.

struct dynamic_attr
Indicate that instances of a type require a Python dictionary to support the dynamic addition of attributes.

struct is_weak_referenceable
Indicate that instances of a type require a weak reference list so that they can be referenced by the Python
weakref.* types.

struct is_generic
If present, nanobind will add a __class_getitem__ function to the newly created type that permits con-
structing parameterized versions (e.g., MyType[int]). The implementation of this function is equivalent
to

def __class_getitem__(cls, value):
import types
return types.GenericAlias(cls, value)

See the section on creating generic types for an example.

This feature is only supported on Python 3.9+. Nanobind will ignore the attribute in Python 3.8 builds.

template<typename T>
struct supplement

Indicate that sizeof(T) bytes of memory should be set aside to store supplemental data in the type object.
See Supplemental type data for more information.

struct type_slots

type_slots(PyType_Slot *value)

nanobind uses the PyType_FromSpec Python C API interface to construct types. In certain advanced use
cases, it may be helpful to append additional type slots during type construction. This class binding annota-
tion can be used to accomplish this. The provided list should be followed by a zero-initialized PyType_Slot
element. See Customizing type creation for more information about this feature.

template<typename T>
struct intrusive_ptr

nanobind provides a custom interface for intrusive reference-counted C++ types that nicely integrate with
Python reference counting. See the separate section on this topic. This annotation marks a type as compatible
with this interface.

intrusive_ptr(void (*set_self_py)(T*, PyObject*) noexcept)
Declares a callback that will be invoked when a C++ instance is first cast into a Python object.

21.13. Class binding annotations 142

nanobind Documentation

21.14 Enum binding annotations

The following annotations can be specified using the variable-length Extra parameter of the constructor
enum_::enum_().

struct is_arithmetic
Indicate that the enumeration may be used with arithmetic operations. This enables the binary operators +
- * // & | ^ << >> and unary - ~ abs(), with operands of either enumeration or numeric type; the
result will be as if the enumeration operands were first converted to integers. (So Shape(2) + Shape(1)
== 3 and Shape(2) * 1.5 == 3.0.) It is unspecified whether operations on mixed enum types (such as
Shape.Circle + Color.Red) are permissible.

21.15 Function binding

object cpp_function(Func &&f, const Extra&... extra)
Convert the function f into a Python callable. This function has a few overloads (not shown here) to sepa-
rately deal with function/method pointers and lambda functions.

The variable length extra parameter can be used to pass a docstring and other function binding annotations.

21.16 Class binding

template<typename T, typename ...Ts>
class class_ : public object

Binding helper class to expose a custom C++ type T (declared using either the class or struct keyword)
in Python.

The variable length parameter Ts is optional and can be used to specify the base class of T and/or an alias
needed to realize trampoline classes.

When the type T was previously already registered (either within the same extension or another extension),
the class_<..> declaration is redundant. nanobind will print a warning message in this case:

RuntimeWarning: nanobind: type 'MyType' was already registered!

The class_<..> instance will subsequently wrap the original type object instead of creating a new one.

template<typename ...Extra>
class_(handle scope, const char *name, const Extra&... extra)

Bind the type T to the identifier name within the scope scope. The variable length extra parameter
can be used to pass a docstring and other class binding annotations.

template<typename Func, typename ...Extra>
class_ &def(const char *name, Func &&f, const Extra&... extra)

Bind the function f and assign it to the class member name. The variable length extra parameter can
be used to pass a docstring and other function binding annotations.

This function has two overloads (listed just below) to handle constructor binding declarations.

Example:

struct A {
void f() { /*...*/ }

};

nb::class_<A>(m, "A")
(continues on next page)

21.14. Enum binding annotations 143

nanobind Documentation

(continued from previous page)

.def(nb::init<>()) // Bind the default constructor

.def("f", &A::f); // Bind the method A::f

template<typename ...Args, typename ...Extra>
class_ &def(init<Args...> arg, const Extra&... extra)

Bind a constructor. The variable length extra parameter can be used to pass a docstring and other
function binding annotations.

template<typename Arg, typename ...Extra>
class_ &def(init_implicit<Arg> arg, const Extra&... extra)

Bind a constructor that may be used for implicit type conversions. The constructor must take a single
argument of an unspecified type Arg.

When nanobind later tries to dispatch a function call requiring an argument of type T while Arg was
actually provided, it will run this constructor to perform the necessary conversion.

The variable length extra parameter can be used to pass a docstring and other function binding anno-
tations.

This constructor generates more compact code than a separate call to implicitly_convertible(),
but is otherwise equivalent.

template<typename Func, typename ...Extra>
class_ &def(new_<Func> arg, const Extra&... extra)

Bind a C++ factory function as a Python object constructor (__new__). This is an advanced feature;
prefer nb::init<..> where possible. See the discussion of customizing object creation for more
details.

template<typename C, typename D, typename ...Extra>
class_ &def_rw(const char *name, D C::* p, const Extra&... extra)

Bind the field p and assign it to the class member name. nanobind constructs a property object with
read-write access (hence the rw suffix) to do so.

Every access from Python will read from or write to the C++ field while performing a suitable conver-
sion (using type casters, bindings, or wrappers) as determined by its type.

The variable length extra parameter can be used to pass a docstring and other function binding
annotations that are forwarded to the anonymous functions used to construct the property. Use the
nb::for_getter and nb::for_setter to pass annotations specifically to the setter or getter part.

Example:

struct A { int value; };

nb::class_<A>(m, "A")
.def_rw("value", &A::value); // Enable mutable access to the field␣

↪A::value

template<typename C, typename D, typename ...Extra>
class_ &def_ro(const char *name, D C::* p, const Extra&... extra)

Bind the field p and assign it to the class member name. nanobind constructs a property object with
read only access (hence the ro suffix) to do so.

Every access from Python will read the C++ field while performing a suitable conversion (using type
casters, bindings, or wrappers) as determined by its type.

The variable length extra parameter can be used to pass a docstring and other function binding anno-
tations that are forwarded to the anonymous functions used to construct the property.

Example:

21.16. Class binding 144

nanobind Documentation

struct A { int value; };

nb::class_<A>(m, "A")
.def_ro("value", &A::value); // Enable read-only access to the field␣

↪A::value

template<typename Getter, typename Setter, typename ...Extra>
class_ &def_prop_rw(const char *name, Getter &&getter, Setter &&setter, const Extra&... extra)

Construct a mutable (hence the rw suffix) Python property and assign it to the class member name.
Every read access will call the function getter with the T instance, and every write access will call
the setter with the T instance and value to be assigned.

The variable length extra parameter can be used to pass a docstring and other function binding anno-
tations. Use the nb::for_getter and nb::for_setter to pass annotations specifically to the setter
or getter part.

Note that this function implicitly assigns the rv_policy::reference_internal return value policy
to getter (as opposed to the usual rv_policy::automatic). Provide an explicit return value policy
as part of the extra argument to override this.

Example: the example below uses def_prop_rw() to expose a C++ setter/getter pair as a more
“Pythonic” property:

class A {
public:

A(int value) : m_value(value) { }
void set_value(int value) { m_value = value; }
int value() const { return m_value; }

private:
int m_value;

};

nb::class_<A>(m, "A")
.def(nb::init<int>())
.def_prop_rw("value",

[](A &t) { return t.value() ; },
[](A &t, int value) { t.set_value(value); });

template<typename Getter, typename ...Extra>
class_ &def_prop_ro(const char *name, Getter &&getter, const Extra&... extra)

Construct a read-only (hence the ro suffix) Python property and assign it to the class member name.
Every read access will call the function getter with the T instance.

The variable length extra parameter can be used to pass a docstring and other function binding anno-
tations.

Note that this function implicitly assigns the rv_policy::reference_internal return value policy
to getter (as opposed to the usual rv_policy::automatic). Provide an explicit return value policy
as part of the extra argument to override this.

Example: the example below uses def_prop_ro() to expose a C++ getter as a more “Pythonic”
property:

class A {
public:

A(int value) : m_value(value) { }
int value() const { return m_value; }

private:
int m_value;

(continues on next page)

21.16. Class binding 145

nanobind Documentation

(continued from previous page)

};

nb::class_<A>(m, "A")
.def(nb::init<int>())
.def_prop_ro("value",

[](A &t) { return t.value() ; });

template<typename Func, typename ...Extra>
class_ &def_static(const char *name, Func &&f, const Extra&... extra)

Bind the static function f and assign it to the class member name. The variable length extra parameter
can be used to pass a docstring and other function binding annotations.

Example:

struct A {
static void f() { /*...*/ }

};

nb::class_<A>(m, "A")
.def_static("f", &A::f); // Bind the static method A::f

template<typename D, typename ...Extra>
class_ &def_rw_static(const char *name, D *p, const Extra&... extra)

Bind the static field p and assign it to the class member name. nanobind constructs a class property
object with read-write access (hence the rw suffix) to do so.

Every access from Python will read from or write to the static C++ field while performing a suitable
conversion (using type casters, bindings, or wrappers) as determined by its type.

The variable length extra parameter can be used to pass a docstring and other function binding
annotations that are forwarded to the anonymous functions used to construct the property Use the
nb::for_getter and nb::for_setter to pass annotations specifically to the setter or getter part.

Example:

struct A { inline static int value = 5; };

nb::class_<A>(m, "A")
// Enable mutable access to the static field A::value
.def_rw_static("value", &A::value);

template<typename D, typename ...Extra>
class_ &def_ro_static(const char *name, D *p, const Extra&... extra)

Bind the static field p and assign it to the class member name. nanobind constructs a class property
object with read-only access (hence the ro suffix) to do so.

Every access from Python will read the static C++ field while performing a suitable conversion (using
type casters, bindings, or wrappers) as determined by its type.

The variable length extra parameter can be used to pass a docstring and other function binding anno-
tations that are forwarded to the anonymous functions used to construct the property

Example:

struct A { inline static int value = 5; };

nb::class_<A>(m, "A")
// Enable read-only access to the static field A::value
.def_ro_static("value", &A::value);

21.16. Class binding 146

nanobind Documentation

template<typename Getter, typename Setter, typename ...Extra>
class_ &def_prop_rw_static(const char *name, Getter &&getter, Setter &&setter, const Extra&...

extra)
Construct a mutable (hence the rw suffix) Python property and assign it to the class member name.
Every read access will call the function getter with T’s Python type object, and every write access
will call the setter with T’s Python type object and value to be assigned.

The variable length extra parameter can be used to pass a docstring and other function binding anno-
tations. Use the nb::for_getter and nb::for_setter to pass annotations specifically to the setter
or getter part.

Note that this function implicitly assigns the rv_policy::reference return value policy to getter
(as opposed to the usual rv_policy::automatic). Provide an explicit return value policy as part of
the extra argument to override this.

Example: the example below uses def_prop_rw_static() to expose a static C++ setter/getter pair
as a more “Pythonic” property:

class A {
public:
static void set_value(int value) { s_value = value; }
static int value() { return s_value; }

private:
inline static int s_value = 5;

};

nb::class_<A>(m, "A")
.def_prop_rw_static("value",

[](nb::handle /*unused*/) { return A::value() ; },
[](nb::handle /*unused*/, int value) { A::set_value(value); });

template<typename Getter, typename ...Extra>
class_ &def_prop_ro_static(const char *name, Getter &&getter, const Extra&... extra)

Construct a read-only (hence the ro suffix) Python property and assign it to the class member name.
Every read access will call the function getter with T’s Python type object.

The variable length extra parameter can be used to pass a docstring and other function binding anno-
tations.

Note that this function implicitly assigns the rv_policy::reference return value policy to getter
(as opposed to the usual rv_policy::automatic). Provide an explicit return value policy as part of
the extra argument to override this.

Example: the example below uses def_prop_ro_static() to expose a static C++ getter as a more
“Pythonic” property:

class A {
public:
static int value() { return s_value; }

private:
inline static int s_value = 5;

};

nb::class_<A>(m, "A")
.def_prop_ro_static("value",

[](nb::handle /*unused*/) { return A::value() ; });

template<detail::op_id id, detail::op_type ot, typename L, typename R, typename ...Extra>
class_ &def(const detail::op_<id, ot, L, R> &op, const Extra&... extra)

This interface provides convenient syntax sugar to replace relatively lengthy method bindings with
shorter operator bindings. To use it, you will need an extra include directive:

21.16. Class binding 147

nanobind Documentation

#include <nanobind/operators.h>

Below is an example type with three arithmetic operators in C++ (unary negation and 2 binary subtrac-
tion overloads) along with corresponding bindings.

Example:

struct A {
float value;

A operator-() const { return { -value }; }
A operator-(const A &o) const { return { value - o.value }; }
A operator-(float o) const { return { value - o }; }

};

nb::class_<A>(m, "A")
.def(nb::init<float>())
.def(-nb::self)
.def(nb::self - nb::self)
.def(nb::self - float());

Bind an arithmetic or comparison operator expressed in short-hand form (e.g., .def(nb::self +
nb::self)).

template<detail::op_id id, detail::op_type ot, typename L, typename R, typename ...Extra>
class_ &def_cast(const detail::op_<id, ot, L, R> &op, const Extra&... extra)

Like the above .def() variant, but furthermore cast the result of the operation back to T.

template<typename T>
class enum_ : public class_<T>

Class binding helper for scoped and unscoped C++ enumerations.

template<typename ...Extra>
NB_INLINE enum_(handle scope, const char *name, const Extra&... extra)

Bind the enumeration of type T to the identifier name within the scope scope. The variable length
extra parameter can be used to pass a docstring and other enum binding annotations (currently, only
is_arithmetic is supported).

enum_ &value(const char *name, T value, const char *doc = nullptr)
Add the entry value() to the enumeration using the identifier name, potentially with a docstring pro-
vided via doc (optional).

enum_ &export_values()
Export all entries of the enumeration into the parent scope.

template<typename T>
class exception : public object

Class binding helper for declaring new Python exception types

exception(handle scope, const char *name, handle base = PyExc_Exception)
Create a new exception type identified by name that derives from base, and install it in scope. The
constructor also calls register_exception_translator() to register a new exception translator
that converts caught C++ exceptions of type T into the newly created Python equivalent.

template<typename ...Args>
struct init

nanobind uses this simple helper class to capture the signature of a constructor. It is only meant to be used
in binding declarations done via class_::def().

21.16. Class binding 148

nanobind Documentation

Sometimes, it is necessary to bind constructors that don’t exist in the underlying C++ type (meaning that they
are specific to the Python bindings). Because init only works for existing C++ constructors, this requires
a manual workaround noting that

nb::class_<MyType>(m, "MyType")
.def(nb::init<const char*, int>());

is syntax sugar for the following lower-level implementation using “placement new”:

nb::class_<MyType>(m, "MyType")
.def("__init__",

[](MyType* t, const char* arg0, int arg1) {
new (t) MyType(arg0, arg1);

});

The provided lambda function will be called with a pointer to uninitialized memory that has already been
allocated (this memory region is co-located with the Python object for reasons of efficiency). The lambda
function can then either run an in-place constructor and return normally (in which case the instance is as-
sumed to be correctly constructed) or fail by raising an exception.

template<typename Arg>
struct init_implicit

See init for detail on binding constructors. The main difference between init and init_implicit is
that the latter only supports constructors taking a single argument Arg, and that it marks the constructor as
usable for implicit conversions from Arg.

Sometimes, it is necessary to bind implicit conversion-capable constructors that don’t exist in the underlying
C++ type (meaning that they are specific to the Python bindings). This can be done manually noting that

nb::class_<MyType>(m, "MyType")
.def(nb::init_implicit<const char*>());

can be replaced by the lower-level code

nb::class_<MyType>(m, "MyType")
.def("__init__",

[](MyType* t, const char* arg0) {
new (t) MyType(arg0);

});

nb::implicitly_convertible<const char*, MyType>();

template<typename Func>
struct new_

This is a small helper class that indicates to class_::def() that a particular lambda or static method
provides a Python object constructor (__new__) for the class being bound. Normally, you would use init
instead if possible, in order to cooperate with nanobind’s usual object creation process. Using new_ replaces
that process entirely. This is principally useful when some C++ type of interest can only provide pointers to
its instances, rather than allowing them to be constructed directly.

Like init, the only use of a new_ object is as an argument to class_::def().

Example use:

class MyType {
private:

MyType();
public:

static std::shared_ptr<MyType> create();
(continues on next page)

21.16. Class binding 149

https://en.wikipedia.org/wiki/Placement_syntax

nanobind Documentation

(continued from previous page)

int value = 0;
};

nb::class_<MyType>(m, "MyType")
.def(nb::new_(&MyType::create));

Given this example code, writing MyType() in Python would produce a Python object wrapping the result
of MyType::create() in C++. If multiple calls to create() return pointers to the same C++ object, these
will turn into references to the same Python object as well.

See the discussion of customizing Python object creation for more information.

21.17 GIL Management

These two RAII helper classes acquire and release the Global Interpreter Lock (GIL) in a given scope. The
gil_scoped_release helper is often combined with the call_guard , as in

m.def("expensive", &expensive, nb::call_guard<nb::gil_scoped_release>());

This releases the interpreter lock while expensive is running, which permits running it in parallel from multiple
Python threads.

struct gil_scoped_acquire

gil_scoped_acquire()

Acquire the GIL

~gil_scoped_acquire()

Release the GIL

struct gil_scoped_release

gil_scoped_release()

Release the GIL (must be currently held)

~gil_scoped_release()

Reacquire the GIL

21.18 Low-level type and instance access

nanobind exposes a low-level interface to provide fine-grained control over the sequence of steps that instantiates a
Python object wrapping a C++ instance. A thorough explanation of these features is provided in a separate section.

21.18.1 Type objects

bool type_check(handle h)
Returns true if h is a type that was previously bound via class_.

size_t type_size(handle h)
Assuming that h represents a bound type (see type_check()), return its size in bytes.

size_t type_align(handle h)
Assuming that h represents a bound type (see type_check()), return its alignment in bytes.

21.17. GIL Management 150

https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization

nanobind Documentation

const std::type_info &type_info(handle h)
Assuming that h represents a bound type (see type_check()), return its C++ RTTI record.

template<typename T>
T &type_supplement(handle h)

Return a reference to supplemental data stashed in a type object. The type T must exactly match the type
specified in the nb::supplement<T> annotation used when creating the type; no type check is performed,
and invalid supplement accesses may crash the interpreter. Also refer to nb::supplement<T>.

str type_name(handle h)
Return the full (module-qualified) name of a type object as a Python string.

void *type_get_slot(handle h, int slot_id)
On Python 3.10+, this function is a simple wrapper around the Python C API function PyType_GetSlot
that provides stable API-compatible access to type object members. On Python 3.9 and earlier, the official
function did not work on non-heap types. The nanobind version consistently works on heap and non-heap
types across Python versions.

21.18.2 Instances

The documentation below refers to two per-instance flags with the following meaning:

• ready: is the instance fully constructed? nanobind will not permit passing the instance to a bound C++
function when this flag is unset.

• destruct: should nanobind call the C++ destructor when the instance is garbage-collected?

bool inst_check(handle h)
Returns true if h represents an instance of a type that was previously bound via class_.

template<typename T>
T *inst_ptr(handle h)

Assuming that h represents an instance of a type that was previously bound via class_, return a pointer to
the underlying C++ instance.

The function does not check that h actually contains an instance with C++ type T.

object inst_alloc(handle h)
Assuming that h represents a type object that was previously created via class_ (see type_check()),
allocate an unitialized object of type h and return it. The ready and destruct flags of the returned instance
are both set to false.

object inst_alloc_zero(handle h)
Assuming that h represents a type object that was previously created via class_ (see type_check()),
allocate a zero-initialized object of type h and return it. The ready and destruct flags of the returned instance
are both set to true.

This operation is equivalent to calling inst_alloc() followed by inst_zero().

object inst_reference(handle h, void *p, handle parent = handle())
Assuming that h represents a type object that was previously created via class_ (see type_check()) create
an object of type h that wraps an existing C++ instance p.

The ready and destruct flags of the returned instance are respectively set to true and false.

This is analogous to casting a C++ object with return value policy rv_policy::reference.

If a parent object is specified, the instance keeps this parent alive while the newly created object exists.
This is analogous to casting a C++ object with return value policy rv_policy::reference_internal.

21.18. Low-level type and instance access 151

nanobind Documentation

object inst_take_ownership(handle h, void *p)
Assuming that h represents a type object that was previously created via class_ (see type_check()) create
an object of type h that wraps an existing C++ instance p.

The ready and destruct flags of the returned instance are both set to true.

This is analogous to casting a C++ object with return value policy rv_policy::take_ownership.

void inst_zero(handle h)
Zero-initialize the contents of h . Sets the ready and destruct flags to true.

bool inst_ready(handle h)
Query the ready flag of the instance h .

std::pair<bool, bool> inst_state(handle h)
Separately query the ready and destruct flags of the instance h .

void inst_mark_ready(handle h)
Simultaneously set the ready and destruct flags of the instance h to true.

void inst_set_state(handle h, bool ready, bool destruct)
Separately set the ready and destruct flags of the instance h .

void inst_destruct(handle h)
Destruct the instance h . This entails calling the C++ destructor if the destruct flag is set and then setting the
ready and destruct fields to false.

void inst_copy(handle dst, handle src)
Copy-construct the contents of src into dst and set the ready and destruct flags of dst to true.

dst should be an uninitialized instance of the same type. Note that setting the destruct flag may be prob-
lematic if dst is an offset into an existing object created using inst_reference() (the destructor will be
called multiple times in this case). If so, you must use inst_set_state() to disable the flag following the
call to inst_copy().

New in nanobind v2.0.0: The function is a no-op when src and dst refer to the same object.

void inst_move(handle dst, handle src)
Analogous to inst_copy(), except that the move constructor is used instead of the copy constructor.

void inst_replace_copy(handle dst, handle src)
Destruct the contents of dst (even if the destruct flag is false). Next, copy-construct the contents of src
into dst and set the ready flag of dst. The value of the destruct flag is subsequently set to its value prior to
the call.

This operation is useful to replace the contents of one instance with that of another regardless of whether
dst has been created using inst_alloc(), inst_reference(), or inst_take_ownership().

New in nanobind v2.0.0: The function is a no-op when src and dst refer to the same object.

void inst_replace_move(handle dst, handle src)
Analogous to inst_replace_copy(), except that the move constructor is used instead of the copy con-
structor.

str inst_name(handle h)
Return the full (module-qualified) name of the instance’s type object as a Python string.

21.18. Low-level type and instance access 152

nanobind Documentation

21.19 Global flags

void set_leak_warnings(bool value) noexcept
By default, nanobind loudly complains when any nanobind instances, types, or functions are still alive when
the Python interpreter shuts down. Call this function to disable or re-enable leak warnings.

void set_implicit_cast_warnings(bool value) noexcept
By default, nanobind loudly complains when it attempts to perform an implicit conversion, and when that
conversion is not successful. Call this function to disable or re-enable the warnings.

inline bool is_alive() noexcept
The function returns true when nanobind is initialized and ready for use. It returns false when the Python
interpreter has shut down, causing the destruction various nanobind-internal data structures. Having access
to this liveness status can be useful to avoid operations that are illegal in the latter context.

21.20 Miscellaneous

str repr(handle h)
Return a stringified version of the provided Python object. Equivalent to repr(h) in Python.

void print(handle value, handle end = handle(), handle file = handle())
Invoke the Python print() function to print the object value. If desired, a line ending end and file handle
file can be specified.

void print(const char *str, handle end = handle(), handle file = handle())
Invoke the Python print() function to print the null-terminated C-style string str that is encoded using
UTF-8 encoding. If desired, a line ending end and file handle file can be specified.

iterator iter(handle h)
Equivalent to iter(h) in Python.

object none()
Return an object representing the value None.

dict builtins()
Return the __builtins__ dictionary.

dict globals()
Return the globals() dictionary.

template<typename Source, typename Target>
void implicitly_convertible()

Indicate that the type Source is implicitly convertible into Target (which must refer to a type that was
previously bound via class_).

Note: the init_implicit interface generates more compact code and should be preferred, i.e., use

nb::class_<Target>(m, "Target")
.def(nb::init_implicit<Source>());

instead of

nb::class_<Target>(m, "Target")
.def(nb::init<Source>());

nb::implicitly_convertible<Source, Target>();

21.19. Global flags 153

nanobind Documentation

The function is provided for reasons of compatibility with pybind11, and as an escape hatch to enable use
cases where init_implicit is not available (e.g., for custom binding-specific constructors that don’t exist
in Target type).

template<typename T, typename ...Ts>
class typed

This helper class provides an interface to parameterize generic types to improve generated Python function
signatures (e.g., to turn list into list[MyType]).

Consider the following binding that iterates over a Python list.

m.def("f", [](nb::list l) {
for (handle h : l) {

// ...
}

});

Suppose that f expects a list of MyType objects, which is not clear from the signature. To make this explicit,
use the nb::typed<T, Ts...> wrapper to pass additional type parameters. This has no effect besides
clarifying the signature—in particular, nanobind does not insert additional runtime checks!

m.def("f", [](nb::typed<nb::list, MyType> l) {
for (nb::handle h : l) {

// ...
}

});

21.20. Miscellaneous 154

CHAPTER

TWENTYTWO

C++ API REFERENCE (EXTRAS)

22.1 Operator overloading

The following optional include directive imports the special value self .

#include <nanobind/operators.h>

The underlying type exposes various C++ operators that enable a shorthand notation to bind operators to python.
See the operator overloading example in the main documentation for details.

class detail::self_t
This is an internal class that should be accessed through the singleton self value.

It supports the overloaded operators listed below. Depending on whether self is the left or right argument
of a binary operation, the binding will map to different Python methods as shown below.

C++ operator Python method (left or right)
operator- __sub__, __rsub__
operator+ __add__, __radd__
operator* __mul__, __rmul__
operator/ __truediv__, __rtruediv__
operator% __mod__, __rmod__
operator<< __lshift__, __rlshift__
operator>> __rshift__, __rrshift__
operator& __and__, __rand__
operator^ __xor__, __rxor__
operator| __or__, __ror__
operator> __gt__, __lt__
operator>= __ge__, __le__
operator< __lt__, __gt__
operator<= __le__, __ge__
operator== __eq__
operator!= __ne__
operator+= __iadd__
operator-= __isub__
operator*= __mul__
operator/= __itruediv__
operator%= __imod__
operator<<= __ilrshift__
operator>>= __ilrshift__
operator&= __iand__
operator^= __ixor__
operator|= __ior__
operator- (unary) __neg__

continues on next page

155

nanobind Documentation

Table 1 – continued from previous page
C++ operator Python method (left or right)
operator+ (unary) __pos__
operator~ (unary) __invert__
operator! (unary) __bool__ (with extra negation)
nb::abs(..) __abs__
nb::hash(..) __hash__

detail::self_t self

22.2 Trampolines

The following macros to implement trampolines that forward virtual function calls to Python require an additional
include directive:

#include <nanobind/trampoline.h>

See the section on trampolines for further detail.

NB_TRAMPOLINE(base, size)
Install a trampoline in an alias class to enable dispatching C++ virtual function calls to a Python implemen-
tation. Refer to the documentation on trampolines to see how this macro can be used.

NB_OVERRIDE(func, ...)
Dispatch the call to a Python method named "func" if it is overloaded on the Python side, and forward the
function arguments specified in the variable length argument Otherwise, call the C++ implementation
func in the base class.

Refer to the documentation on trampolines to see how this macro can be used.

NB_OVERRIDE_PURE(func, ...)
Dispatch the call to a Python method named "func" if it is overloaded on the Python side, and forward
the function arguments specified in the variable length argument Otherwise, raise an exception. This
macro should be used when the C++ function is pure virtual.

Refer to the documentation on trampolines to see how this macro can be used.

NB_OVERRIDE_NAME(name, func, ...)
Dispatch the call to a Python method named name if it is overloaded on the Python side, and forward the
function arguments specified in the variable length argument Otherwise, call the C++ function func
in the base class.

This function differs from NB_OVERRIDE() in that C++ and Python functions can be named differently (e.g.,
operator+ and __add__). Refer to the documentation on trampolines to see how this macro can be used.

NB_OVERRIDE_PURE_NAME(name, func, ...)
Dispatch the call to a Python method named name if it is overloaded on the Python side, and forward the
function arguments specified in the variable length argument Otherwise, raise an exception. This macro
should be used when the C++ function is pure virtual.

This function differs from NB_OVERRIDE_PURE() in that C++ and Python functions can be named differently
(e.g., operator+ and __add__). Although the C++ base implementation cannot be called, its name is still
important since nanobind uses it to infer the return value type. Refer to the documentation on trampolines
to see how this macro can be used.

22.2. Trampolines 156

nanobind Documentation

22.3 STL vector bindings

The following function can be used to expose std::vector<...> variants in Python. It is not part of the core
nanobind API and requires an additional include directive:

#include <nanobind/stl/bind_vector.h>

template<typename Vector, typename ...Args>
class_<Vector> bind_vector(handle scope, const char *name, Args&&... args)

Bind the STL vector-derived type Vector to the identifier name and place it in scope (e.g., a module_).
The variable argument list can be used to pass a docstring and other class binding annotations.

The type includes the following methods resembling list:

Signature Documentation
__init__(self) Default constructor
__init__(self, arg: Vector) Copy constructor
__init__(self, arg: typing.Sequence) Construct from another sequence type
__len__(self) -> int Return the number of elements
__repr__(self) -> str Generate a string representation
__contains__(self, arg: Value) Check if the vector contains arg
__eq__(self, arg: Vector) Check if the vector is equal to arg
__ne__(self, arg: Vector) Check if the vector is not equal to arg
__bool__(self) -> bool Check whether the vector is empty
__iter__(self) -> iterator Instantiate an iterator to traverse the elements
__getitem__(self, arg: int) -> Value Return an element from the list (supports negative

indexing)
__setitem__(self, arg0: int, arg1:
Value)

Assign an element in the list (supports negative in-
dexing)

__delitem__(self, arg: int) Delete an item from the list (supports negative in-
dexing)

__setitem__(self, arg: slice) ->
Vector

Slice-based getter

__setitem__(self, arg0: slice, arg1:
Value)

Slice-based assignment

__delitem__(self, arg: slice) Slice-based deletion
clear(self) Remove all items from the list
append(self, arg: Value) Append a list item
insert(self, arg0: int, arg1: Value) Insert a list item (supports negative indexing)
pop(self, index: int = -1) Pop an element at position index (the end by de-

fault)
extend(self, arg: Vector) Extend self by appending elements from arg.
count(self, arg: Value) Count the number of times that arg is contained in

the vector
remove(self, arg: Value) Remove all occurrences of arg.

In contrast to std::vector<...>, all bound functions perform range checks to avoid undefined behavior.
When the type underlying the vector is not comparable or copy-assignable, some of these functions will not
be generated.

The binding operation is a no-op if the vector type has already been registered with nanobind.

Warning:
While this function creates a type resembling a Python list, it has a major caveat: the item
accessor __getitem__ copies the accessed element by default (the bottom of this paragraph

22.3. STL vector bindings 157

nanobind Documentation

explains how this copy can be avoided).

Consequently, writes to elements may not propagate in the expected way. Consider the fol-
lowing C++ bindings:

struct A {
int value;

};

nb::class_<A>(m, "A")
.def(nb::init<int>())
.def_rw("value", &A::value);

nb::bind_vector<std::vector<A>>(m, "VecA");

On the Python end, they yield the following surprising behavior:
from my_ext import A, VecA

va = VecA()
va.append(A(123))
a[0].value = 456
assert a[0].value == 456 # <-- assertion fails!

To actually modify va, another write is needed.
v = a[0]
v.value = 456
a[0] = v

This may seem like a strange design, so it is worth explaining why the implementation works
in this way.

The key issue is that any particular value (e.g., va[0]) lies within a memory buffer managed
by the std::vector. It is not safe for nanobind to refer to objects within this buffer using
their absolute or relative memory address. For example, inserting an element at position
0 will rearrange the buffer’s contents and shift all subsequent A instances. If nanobind A
objects could be “views” into the std::vector, then an insertion would cause the contents
of unrelated A Python objects to change unexpectedly. Insertion may also require reallocation
of the buffer, invalidating all current addresses, and this could lead to undefined behavior
(use-after-free) if nanobind did not make a copy.

There are three situations in which the surprising behavior is avoided:

1. If the modification of the array is performed using in-place operations like

v[i] += 5

In-place operators automatically perform an array assignment, causing the issue to
disappear. This means that if you work with a vector type like std::vector<int> or
std::vector<std::string> with an immutable element type like int or str on
the Python end, it will behave completely naturally in Python.

2. If the array contains STL shared pointers (e.g.,
std::vector<std::shared_ptr<T>>), the added indirection and ownership
tracking removes the need for extra copies.

3. If the array contains pointers to reference-counted objects (e.g.,
std::vector<ref<T>> via the ref wrapper) and T uses the intrusive refer-
ence counting approach explained here, the added indirection and ownership tracking
removes the need for extra copies.

You should never use this class to bind pointer-valued vectors std::vector<T*> when T does not use
intrusive reference counting. Some kind of ownership tracking (points 2 and 3 of the above list) is needed
in this case.

22.3. STL vector bindings 158

nanobind Documentation

22.4 STL map bindings

The following function can be used to expose std::map<...> or std::unordered_map<...> variants in
Python. It is not part of the core nanobind API and requires an additional include directive:

#include <nanobind/stl/bind_map.h>

template<typename Map, typename ...Args>
class_<Map> bind_map(handle scope, const char *name, Args&&... args)

Bind the STL map-derived type Map (ordered or unordered) to the identifier name and place it in scope (e.g.,
a module_). The variable argument list can be used to pass a docstring and other class binding annotations.

The type includes the following methods resembling dict:

Signature Documentation
__init__(self) Default constructor
__init__(self, arg: Map) Copy constructor
__init__(self, arg: dict) Construct from a Python dictionary
__len__(self) -> int Return the number of elements
__repr__(self) -> str Generate a string representation
__contains__(self, arg: Key) Check if the map contains arg
__eq__(self, arg: Map) Check if the map is equal to arg
__ne__(self, arg: Map) Check if the map is not equal to arg
__bool__(self) -> bool Check whether the map is empty
__iter__(self) -> iterator Instantiate an iterator to traverse the set of map keys
__getitem__(self, arg: Key) -> Value Return an element from the map
__setitem__(self, arg0: Key, arg1:
Value)

Assign an element in the map

__delitem__(self, arg: Key) Delete an item from the map
clear(self) Remove all items from the list
update(self, arg: Map) Update the map with elements from arg.
keys(self, arg: Map) -> Map.KeyView Returns an iterable view of the map’s keys
values(self, arg: Map) -> Map.
ValueView

Returns an iterable view of the map’s values

items(self, arg: Map) -> Map.ItemView Returns an iterable view of the map’s items

The binding operation is a no-op if the map type has already been registered with nanobind.

The binding routine ideally expects the involved types to be:

• copy-constructible

• copy-assignable

• equality-comparable

If not all of these properties are available, then a subset of the above methods will be omitted. Please refer
to bind_map.h for details on the logic.

Warning: While this function creates a type resembling a Python dict, it has a major caveat: the item
accessor __getitem__ copies the accessed element by default.

Please refer to the STL vector bindings for a discussion of the problem and possible solutions. Everything
applies equally to the map case.

22.4. STL map bindings 159

nanobind Documentation

22.5 Unique pointer deleter

The following deleter should be used to gain maximal flexibility in combination with std::unique_ptr<..>. It
requires the following additional include directive:

#include <nanobind/stl/unique_ptr.h>

See the two documentation sections on unique pointers for further detail (#1, #2).

template<typename T>
struct deleter

deleter() = default
Create a deleter that destroys the object using a delete expression.

deleter(handle h)
Create a deleter that destroys the object by reducing the Python reference count.

bool owned_by_python() const
Check if the object is owned by Python.

bool owned_by_cpp() const
Check if the object is owned by C++.

void operator()(void *p) noexcept
Destroy the object at address p.

22.6 Iterator bindings

The following functions can be used to expose existing C++ iterators in Python. They are not part of the core
nanobind API and require an additional include directive:

#include <nanobind/make_iterator.h>

template<rv_policy Policy = rv_policy::reference_internal, typename Iterator, typename ...Extra>
auto make_iterator(handle scope, const char *name, Iterator &&first, Iterator &&last, Extra&&... extra)

Create a Python iterator wrapping the C++ iterator represented by the range [first, last). The Extra
parameter can be used to pass additional function binding annotations.

This function lazily creates a new Python iterator type identified by name, which is stored in the given scope.
Usually, some kind of keep_alive annotation is needed to tie the lifetime of the parent container to that of
the iterator.

The return value is a typed iterator (iterator wrapped using typed), whose template parameter is given
by the type of *first.

Here is an example of what this might look like for a STL vector:

using IntVec = std::vector<int>;

nb::class_<IntVec>(m, "IntVec")
.def("__iter__",

[](const IntVec &v) {
return nb::make_iterator(nb::type<IntVec>(), "iterator",

v.begin(), v.end());
}, nb::keep_alive<0, 1>());

template<rv_policy Policy = rv_policy::reference_internal, typename Type, typename ...Extra>

22.5. Unique pointer deleter 160

nanobind Documentation

auto make_iterator(handle scope, const char *name, Type &value, Extra&&... extra)
This convenience wrapper calls the above make_iterator() variant with first and last set to
std::begin(value) and std::end(value), respectively.

template<rv_policy Policy = rv_policy::reference_internal, typename Iterator, typename ...Extra>
iterator make_key_iterator(handle scope, const char *name, Iterator &&first, Iterator &&last, Extra&&...

extra)
make_iterator() specialization for C++ iterators that return key-value pairs. make_key_iterator()
returns the first pair element to iterate over keys.

The return value is a typed iterator (iterator wrapped using typed), whose template parameter is given
by the type of (*first).first.

template<rv_policy Policy = rv_policy::reference_internal, typename Iterator, typename ...Extra>
iterator make_value_iterator(handle scope, const char *name, Iterator &&first, Iterator &&last, Extra&&...

extra)
make_iterator() specialization for C++ iterators that return key-value pairs. make_value_iterator()
returns the second pair element to iterate over values.

The return value is a typed iterator (iterator wrapped using typed), whose template parameter is given
by the type of (*first).second.

22.7 N-dimensional array type

The following type can be used to exchange n-dimension arrays with frameworks like NumPy, PyTorch, Tensorflow,
JAX, and others. It requires an additional include directive:

#include <nanobind/ndarray.h>

Detailed documentation including example code is provided in a separate section.

bool ndarray_check(handle h) noexcept
Test whether the Python object represents an ndarray.

Objects with a __dlpack__ attribute or objects that implement the buffer protocol are considered as ndarray
objects. In addition, arrays from NumPy, PyTorch, TensorFlow and XLA are also regarded as ndarrays.

template<typename ...Args>
class ndarray

ndarray() = default
Create an invalid array.

template<typename ...Args2>
explicit ndarray(const ndarray<Args2...> &other)

Reinterpreting constructor that wraps an existing nd-array (parameterized by Args) into a new ndarray
(parameterized by Args2). No copy or conversion is made.

Dropping parameters is always safe. For example, a function that returns different array types could
call it to convert ndarray<T> to ndarray<>. When adding constraints, the constructor is only safe
to use following a runtime check to ensure that newly created array actually possesses the advertised
properties.

ndarray(const ndarray&)

Copy constructor. Increases the reference count of the referenced array.

ndarray(ndarray&&)

Move constructor. Steals the referenced array without changing reference counts.

22.7. N-dimensional array type 161

nanobind Documentation

~ndarray()

Decreases the reference count of the referenced array and potentially destroy it.

ndarray &operator=(const ndarray&)

Copy assignment operator. Increases the reference count of the referenced array. Decreases the refer-
ence count of the previously referenced array and potentially destroy it.

ndarray &operator=(ndarray&&)

Move assignment operator. Steals the referenced array without changing reference counts. Decreases
the reference count of the previously referenced array and potentially destroy it.

ndarray(void *data, size_t ndim, const size_t *shape, handle owner = nanobind::handle(), const int64_t
*strides = nullptr, dlpack::dtype dtype = nanobind::dtype<Scalar>(), int32_t device_type =
device::cpu::value, int32_t device_id = 0)

Create an array wrapping an existing memory allocation. The following parameters can be specified:

• data: pointer address of the memory region. When the ndarray is parameterized by a constant
scalar type to indicate read-only access, a const pointer must be passed instead.

• ndim : the number of dimensions.

• shape: specifies the size along each axis. The referenced array must must have ndim entries.

• owner: if provided, the array will hold a reference to this object until it is destructed.

• strides is optional; a value of nullptr implies C-style strides.

• dtype describes the data type (floating point, signed/unsigned integer) and bit depth.

• The device_type and device_id indicate the device and address space associated with the
pointer value.

ndarray(void *data, const std::initializer_list<size_t> shape, handle owner = nanobind::handle(),
std::initializer_list<int64_t> strides = {}, dlpack::dtype dtype = nanobind::dtype<Scalar>(),
int32_t device_type = device::cpu::value, int32_t device_id = 0)

Alternative form of the above constructor, which accepts the shape and strides arguments using a
std::initializer_list. It automatically infers the value of ndim based on the size of shape.

dlpack::dtype dtype() const
Return the data type underlying the array

size_t ndim() const
Return the number of dimensions.

size_t size() const
Return the size of the array (i.e. the product of all dimensions).

size_t itemsize() const
Return the size of a single array element in bytes. The returned value is rounded up to the next full byte
in case of bit-level representations (query dtype::bits for bit-level granularity).

size_t nbytes() const
Return the size of the entire array bytes. The returned value is rounded up to the next full byte in case
of bit-level representations.

size_t shape(size_t i) const
Return the size of dimension i.

int64_t stride(size_t i) const
Return the stride (in number of elements) of dimension i.

22.7. N-dimensional array type 162

nanobind Documentation

const int64_t *shape_ptr() const
Return a pointer to the shape array. Note that the return type is const int64_t*, which may be
unexpected as the scalar version shape() casts its result to a size_t.

This is a consequence of the DLPack tensor representation that uses signed 64-bit integers for all of
these fields.

const int64_t *stride_ptr() const
Return pointer to the stride array.

bool is_valid() const
Check whether the array is in a valid state.

int32_t device_type() const
ID denoting the type of device hosting the array. This will match the value field of a device class,
such as device::cpu::value or device::cuda::value.

int32_t device_id() const
In a multi-device/GPU setup, this function returns the ID of the device storing the array.

const Scalar *data() const
Return a const pointer to the array data.

Scalar *data()
Return a mutable pointer to the array data. Only enabled when Scalar is not itself const.

template<typename ...Extra>
auto view()

Returns an nd-array view that is optimized for fast array access on the CPU. You may optionally spec-
ify additional ndarray constraints via the Extra parameter (though a runtime check should first be
performed to ensure that the array possesses these properties).

The returned view provides the operations data(), ndim(), shape(), stride(), and operator()
following the conventions of the ndarray type.

template<typename ...Ts>
auto &operator()(Ts... indices)

Return a mutable reference to the element at stored at the provided index/indices. sizeof(Ts) must
match ndim().

This accessor is only available when the scalar type and array dimension were specified as template
parameters.

22.7.1 Data types

Nanobind uses the DLPack ABI to represent metadata describing n-dimensional arrays (even when they are ex-
changed using the buffer protocol). Consequently, the set of possible dtypes is more restricted than that of other
nd-array libraries (e.g., NumPy). Relevant data structures are located in the nanobind::dlpack sub-namespace.

enum class dlpack::dtype_code : uint8_t
This enumeration characterizes the elementary array data type regardless of bit depth.

enumerator Int = 0
Signed integer format

enumerator UInt = 1
Unsigned integer format

enumerator Float = 2
IEEE-754 floating point format

22.7. N-dimensional array type 163

https://github.com/dmlc/dlpack

nanobind Documentation

enumerator Bfloat = 4
“Brain” floating point format

enumerator Complex = 5
Complex numbers parameterized by real and imaginary component

struct dlpack::dtype
Represents the data type underlying an n-dimensional array. Use the dtype<T>() function to return a pop-
ulated instance of this data structure given a scalar C++ arithmetic type.

uint8_t code = 0;
This field must contain the value of one of the dlpack::dtype_code enumerants.

uint8_t bits = 0;
Number of bits per entry (e.g., 32 for a C++ single precision float)

uint16_t lanes = 0;
Number of SIMD lanes (typically 1)

template<typename T>
dlpack::dtype dtype()

Returns a populated instance of the dlpack::dtype structure given a scalar C++ arithmetic type.

22.7.2 Array annotations

The ndarray<..> class admits optional template parameters. They constrain the type of array arguments that
may be passed to a function.

The following are supported:

Data type

The data type of the underlying scalar element. The following are supported.

• [u]int8_t up to [u]int64_t and other variations (unsigned long long, etc.)

• float, double

• bool

Annotate the data type with const to indicate a read-only array. Note that only the buffer protocol/NumPy interface
considers const-ness at the moment; data exchange with other array libraries will ignore this annotation.

When the is unspecified (e.g., to accept arbitrary input arrays), the ro annotation can instead be used to denote
read-only access:

class ro
Indicate read-only access (use only when no data type is specified.)

nanobind does not support non-standard types as documented in the section on dtype limitations.

22.7. N-dimensional array type 164

nanobind Documentation

Shape

template<ssize_t... Is>
class shape

Require the array to have sizeof...(Is) dimensions. Each entry of Is specifies a fixed size constraint for
that specific dimension. An entry equal to -1 indicates that any size should be accepted for this dimension.

(An alias named nb::any representing -1 was removed in nanobind 2).

template<size_t N>
class ndim

Alternative to the above that only constrains the array dimension. nb::ndim<2> is equivalent to
nb::shape<-1, -1>.

Contiguity

class c_contig
Request that the array storage uses a C-contiguous representation.

class f_contig
Request that the array storage uses a F (Fortran)-contiguous representation.

class any_contig
Don’t place any demands on array contiguity (the default).

Device type

class device
The following helper classes can be used to constrain the device and address space of an array. Each class
has a static constexpr int32_t value field that will then match up with ndarray::device_id().

class cpu
CPU heap memory

class cuda
NVIDIA CUDA device memory

class cuda_host
NVIDIA CUDA host-pinned memory

class cuda_managed
NVIDIA CUDA managed memory

class vulkan
Vulkan device memory

class metal
Apple Metal device memory

class rocm
AMD ROCm device memory

class rocm_host
AMD ROCm host memory

class oneapi
Intel OneAPI device memory

22.7. N-dimensional array type 165

nanobind Documentation

Framework

Framework annotations cause nb::ndarray objects to convert into an equivalent representation in one of the
following frameworks:

class numpy

class tensorflow

class pytorch

class jax

22.8 Eigen convenience type aliases

The following helper type aliases require an additional include directive:

#include <nanobind/eigen/dense.h>

using DStride = Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic>
This type alias refers to an Eigen stride object that is sufficiently flexible so that can be easily called with
NumPy arrays and array slices.

template<typename T>
using DRef = Eigen::Ref<T , 0, DStride>

This templated type alias creates an Eigen::Ref<..> with flexible strides for zero-copy data exchange
between Eigen and NumPy.

template<typename T>
using DMap = Eigen::Map<T , 0, DStride>

This templated type alias creates an Eigen::Map<..> with flexible strides for zero-copy data exchange
between Eigen and NumPy.

22.9 Timestamp and duration conversions

nanobind supports bidirectional conversions of timestamps and durations between their standard representa-
tions in Python (datetime.datetime, datetime.timedelta) and in C++ (std::chrono::time_point,
std::chrono::duration). A few unidirectional conversions from other Python types to these C++ types are
also provided and explained below.

These type casters require an additional include directive:

#include <nanobind/stl/chrono.h>

22.9.1 An overview of clocks in C++11

The C++11 standard defines three different clocks, and users can define their own. Each
std::chrono::time_point is defined relative to a particular clock. When using the chrono type caster,
you must be aware that only std::chrono::system_clock is guaranteed to convert to a Python datetime
object; other clocks may convert to timedelta if they don’t represent calendar time.

The first clock defined by the standard is std::chrono::system_clock. This clock measures the current date
and time, much like the Python time.time() function. It can change abruptly due to administrative actions,
daylight savings time transitions, or synchronization with an external time server. That makes this clock a poor
choice for timing purposes, but a good choice for wall-clock time.

22.8. Eigen convenience type aliases 166

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/time.html#time.time

nanobind Documentation

The second clock defined by the standard is std::chrono::steady_clock. This clock ticks at a steady rate and
is never adjusted, like time.monotonic() in Python. That makes it excellent for timing purposes, but the value
in this clock does not correspond to the current date and time. Often this clock will measure the amount of time
your system has been powered on. This clock will never be the same clock as the system clock, because the system
clock can change but steady clocks cannot.

The third clock defined in the standard is std::chrono::high_resolution_clock. This clock is the clock that
has the highest resolution out of all the clocks in the system. It is normally an alias for either system_clock
or steady_clock, but can be its own independent clock. Due to this uncertainty, conversions of time mea-
sured on the high_resolution_clock to Python produce platform-dependent types: you’ll get a datetime
if high_resolution_clock is an alias for system_clock on your system, or a timedelta value otherwise.

22.9.2 Provided conversions

The C++ types described in this section may be instantiated with any precision. Conversions to a less-precise type
will round towards zero. Since Python’s built-in date and time objects support only microsecond precision, any
precision beyond that on the C++ side will be lost when converting to Python.

C++ to Python

• std::chrono::system_clock::time_point → datetime.datetime
A system clock time will be converted to a Python datetime instance. The result describes a time in
the local timezone, but does not have any timezone information attached to it (it is a naive datetime
object).

• std::chrono::duration → datetime.timedelta
A duration will be converted to a Python timedelta. Any precision beyond microseconds is lost by
rounding towards zero.

• std::chrono::[other_clock]::time_point → datetime.timedelta
A time on any clock except the system clock will be converted to a Python timedelta, which measures
the number of seconds between the clock’s epoch and the time point of interest.

Python to C++

• datetime.datetime or datetime.date or datetime.time →
std::chrono::system_clock::time_point

A Python date, time, or datetime object can be converted into a system clock timepoint. A time with
no date information is treated as that time on January 1, 1970. A date with no time information is
treated as midnight on that date. Any timezone information is ignored.

• datetime.timedelta → std::chrono::duration
A Python time delta object can be converted into a duration that describes the same number of seconds
(modulo precision limitations).

• datetime.timedelta → std::chrono::[other_clock]::time_point
A Python time delta object can be converted into a timepoint on a clock other than the system clock.
The resulting timepoint will be that many seconds after the target clock’s epoch time.

• float → std::chrono::duration
A floating-point value can be converted into a duration. The input is treated as a number of seconds,
and fractional seconds are supported to the extent representable.

• float → std::chrono::[other_clock]::time_point
A floating-point value can be converted into a timepoint on a clock other than the system clock. The
input is treated as a number of seconds, and fractional seconds are supported to the extent representable.
The resulting timepoint will be that many seconds after the target clock’s epoch time.

22.9. Timestamp and duration conversions 167

https://docs.python.org/3/library/time.html#time.monotonic
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.time
https://docs.python.org/3/library/datetime.html#datetime.time
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta

nanobind Documentation

22.10 Evaluating Python expressions from strings

The following functions can be used to evaluate Python functions and expressions. They require an additional
include directive:

#include <nanobind/eval.h>

Detailed documentation including example code is provided in a separate section.

enum class eval_mode
This enumeration specifies how the content of a string should be interpreted. Used in Py_CompileString().

enumerator eval_expr = Py_eval_input
Evaluate a string containing an isolated expression

enumerator eval_single_statement = Py_single_input
Evaluate a string containing a single statement. Returns c None

enumerator eval_statements = Py_file_input
Evaluate a string containing a sequence of statement. Returns c None

template<eval_mode start = eval_expr, size_t N>
object eval(const char (&s)[N], handle global = handle(), handle local = handle())

Evaluate the given Python code in the given global/local scopes, and return the value.

inline void exec(const str &expr, handle global = handle(), handle local = handle())
Execute the given Python code in the given global/local scopes.

22.11 Intrusive reference counting helpers

The following functions and classes can be used to augment user-provided classes with intrusive reference counting
that greatly simplifies shared ownership in larger C++/Python binding projects.

This functionality requires the following include directives:

#include <nanobind/intrusive/counter.h>
#include <nanobind/intrusive/ref.h>

These headers reference several functions, whose implementation must be provided. You can do so by including
the following file from a single .cpp file of your project:

#include <nanobind/intrusive/counter.inl>

The functionality in these files consist of the following classes and functions:

class intrusive_counter
Simple atomic reference counter that can optionally switch over to Python-based reference counting.

The various copy/move assignment/constructors intentionally don’t transfer the reference count. This is so
that the contents of classes containing an intrusive_counter can be copied/moved without disturbing the
reference counts of the associated instances.

intrusive_counter() noexcept = default
Initialize with a reference count of zero.

intrusive_counter(const intrusive_counter &o)
Copy constructor, which produces a zero-initialized counter. Does not copy the reference count from
o.

22.10. Evaluating Python expressions from strings 168

nanobind Documentation

intrusive_counter(intrusive_counter &&o)
Move constructor, which produces a zero-initialized counter. Does not copy the reference count from
o.

intrusive_counter &operator=(const intrusive_counter &o)
Copy assignment operator. Does not copy the reference count from o.

intrusive_counter &operator=(intrusive_counter &&o)
Move assignment operator. Does not copy the reference count from o.

void inc_ref() const noexcept
Increase the reference count. When the counter references an object managed by Python, the operation
calls Py_INCREF() to increase the reference count of the Python object instead.

The inc_ref() top-level function encapsulates this logic for subclasses of intrusive_base.

bool dec_ref() const noexcept
Decrease the reference count. When the counter references an object managed by Python, the operation
calls Py_DECREF() to decrease the reference count of the Python object instead.

When the C++-managed reference count reaches zero, the operation returns true to signal to the caller
that it should use a delete expression to destroy the instance.

The dec_ref() top-level function encapsulates this logic for subclasses of intrusive_base.

void set_self_py(PyObject *self)
Set the Python object associated with this instance. This operation is usually called by nanobind when
ownership is transferred to the Python side.

Any references from prior calls to intrusive_counter::inc_ref() are converted into Python ref-
erences by calling Py_INCREF() repeatedly.

PyObject *self_py()
Return the Python object associated with this instance (or nullptr).

class intrusive_base
Simple polymorphic base class for a intrusively reference-counted object hierarchy. The member functions
expose corresponding functionality of intrusive_counter.

void inc_ref() const noexcept
See intrusive_counter::inc_ref().

bool dec_ref() const noexcept
See intrusive_counter::dec_ref().

void set_self_py(PyObject *self)
See intrusive_counter::set_self_py().

PyObject *self_py()
See intrusive_counter::self_py().

void intrusive_init(void (*intrusive_inc_ref_py)(PyObject*) noexcept, void
(*intrusive_dec_ref_py)(PyObject*) noexcept)

Function to register reference counting hooks with the intrusive reference counter class. This allows its
implementation to not depend on Python.

You would usually call this function as follows from the initialization routine of a Python extension:

NB_MODULE(my_ext, m) {
nb::intrusive_init(

[](PyObject * o) noexcept {
nb::gil_scoped_acquire guard;
Py_INCREF(o);

(continues on next page)

22.11. Intrusive reference counting helpers 169

nanobind Documentation

(continued from previous page)

},
[](PyObject * o) noexcept {

nb::gil_scoped_acquire guard;
Py_DECREF(o);

});

// ...
}

inline void inc_ref(intrusive_base *o) noexcept
Reference counting helper function that calls o->inc_ref() if o is not equal to nullptr.

inline void dec_ref(intrusive_base *o) noexcept
Reference counting helper function that calls o->dec_ref() if o is not equal to nullptr and delete o
when the reference count reaches zero.

template<typename T>
class ref

RAII scoped reference counting helper class

ref<T> is a simple RAII wrapper class that encapsulates a pointer to an instance with intrusive reference
counting.

It takes care of increasing and decreasing the reference count as needed and deleting the instance when the
count reaches zero.

For this to work, compatible functions inc_ref() and dec_ref()must be defined before including the file
nanobind/intrusive/ref.h. Default implementations for subclasses of the type intrusive_base are
already provided as part of the file counter.h.

ref() = default
Create a null reference

ref(T *ptr)
Create a reference from a pointer. Increases the reference count of the object (if not nullptr).

ref(const ref &r)
Copy a reference. Increase the reference count of the object (if not nullptr).

ref(ref &&r) noexcept
Move a reference. Object reference counts are unaffected by this operation.

~ref()

Destroy a reference. Decreases the reference count of the object (if not nullptr).

ref &operator=(ref &&r) noexcept
Move-assign another reference into this one.

ref &operator=(const ref &r)
Copy-assign another reference into this one.

ref &operator=(const T *ptr)
Overwrite this reference with a pointer to another object

void reset()
Clear the reference and reduces the reference count of the object (if not nullptr)

bool operator==(const ref &r) const
Compare this reference with another reference (pointer equality)

22.11. Intrusive reference counting helpers 170

nanobind Documentation

bool operator!=(const ref &r) const
Compare this reference with another reference (pointer inequality)

bool operator==(const T *ptr) const
Compare this reference with another object (pointer equality)

bool operator!=(const T *ptr) const
Compare this reference with another object (pointer inequality)

T *operator->()
Access the object referenced by this reference

const T *operator->() const
Access the object referenced by this reference (const version)

T &operator*()
Return a C++ reference to the referenced object

const T &operator*() const
Return a C++ reference to the referenced object (const version)

T *get()
Return a C++ pointer to the referenced object

const T *get() const
Return a C++ pointer to the referenced object (const version)

22.12 Typing

The following functions for typing-related functionality require an additional include directive:

#include <nanobind/typing.h>

template<typename ...Args>
object type_var(Args&&... args)

Create a type variable (i.e., an instance of typing.TypeVar). All arguments of the original Python con-
struction are supported, e.g.:

m.attr("T") = nb::type_var("T",
"contravariant"_a = true,
"covariant"_a = false,
"bound"_a = nb::type<MyClass>());

template<typename ...Args>
object type_var_tuple(Args&&... args)

Analogousto type_var(), create a type variable tuple (i.e., an instance of typing.TypeVarTuple).

object any_type()
Convenience wrapper, which returns typing.Any.

22.12. Typing 171

https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.TypeVarTuple

CHAPTER

TWENTYTHREE

CMAKE API REFERENCE

nanobind’s CMake API simplifies the process of building python extension modules. This is needed because quite
a few steps are involved: nanobind must build the module, a library component, link the two together, and add a
different set of compilation and linker flags depending on the target platform.

If you prefer another build system, then you have the following options:

• Nicholas Junge has created a Bazel interface to nanobind. Please report Bazel-specific issues there.

• You could create a new build system from scratch that takes care of these steps. See this file for inspiration
on how to do this on Linux. Note that you will be on your own if you choose to go this route—I unfortunately
do not have the time to respond to GitHub tickets related to custom build systems.

The section on building extensions provided an introductory example of how to set up a basic build system via the
nanobind_add_module() command, which is the high level build interface. The defaults chosen by this function
are somewhat opinionated, however. For this reason, nanobind also provides an alternative low level interface that
decomposes it into smaller steps.

A later part of this section explains how a Git submodule dependency can be avoided in exchange for a system-
provided package.

Finally, the section ends with an explanation of the CMake convenience interface for stub generation.

23.1 High-level interface

The high-level interface consists of just one CMake command:

nanobind_add_module

Compile a nanobind extension module using the specified target name, optional flags, and source code files.
Use it as follows:

nanobind_add_module(
my_ext # Target name
NB_STATIC STABLE_ABI LTO # Optional flags (see below)
my_ext.h # Source code files below
my_ext.cpp)

It supports the following optional parameters:

172

https://github.com/nicholasjng
https://github.com/nicholasjng/nanobind-Bazel
https://github.com/wjakob/nanobind/blob/master/src/nb_combined.cpp

nanobind Documentation

STABLE_ABIPerform a stable ABI build, making it possible to use a compiled extension across Python minor
versions. The flag is ignored on Python versions older than < 3.12.

NB_STATICCompile the core nanobind library as a static library. This simplifies redistribution but can
increase the combined binary storage footprint when a project contains many Python extensions
(this is the default).

NB_SHAREDThe opposite of NB_STATIC: compile the core nanobind library as a shared library for use in
projects that consist of multiple extensions.

PROTECT_STACKDon’t remove stack smashing-related protections.
LTO Perform link time optimization.
NOMINSIZEDon’t perform optimizations to minimize binary size.
NOSTRIP Don’t strip unneded symbols and debug information from the compiled extension when per-

forming release builds.
NB_DOMAIN
<name>

Restrict the inter-extension type visibility to a named subdomain. See the associated FAQ entry
for details.

MUSL_DYNAMIC_LIBCPPWhen cibuildwheel is used to produce musllinux wheels, don’t statically link against
libstdc++ and libgcc (which is an optimization that nanobind does by default in this specific
case). If this explanation sounds confusing, then you can ignore it. See the detailed description
below for more information on this step.

nanobind_add_module() performs the following steps to produce bindings.

• It creates a CMake library via add_library(target_name MODULE ...) and enables the use of
C++17 features during compilation.

• It creates a CMake target for an internal library component required by nanobind (named nanobind-..
where .. depends on the compilation flags). This is only done once when compiling multiple exten-
sions.

This library component can either be a static or shared library depending on whether the optional
NB_STATIC or NB_SHARED parameter was provided to nanobind_add_module(). The default is a
static build, which simplifies redistribution (only one shared library must be deployed).

When a project contains many Python extensions, a shared build is preferable to avoid unnecessary
binary size overheads that arise from redundant copies of the nanobind-... component.

• It links the newly created library against the nanobind-.. target.

• It appends the library suffix (e.g., .cpython-39-darwin.so) based on information provided by
CMake’s FindPython module.

• When requested via the optional STABLE_ABI parameter, the build system will create a stable ABI
extension module with a different suffix (e.g., .abi3.so).

Once compiled, a stable ABI extension can be reused across Python minor versions. In contrast, or-
dinary builds are only compatible across patch versions. This feature requires Python >= 3.12 and is
ignored on older versions. Note that use of the stable ABI come at a small performance cost since
nanobind can no longer access the internals of various data structures directly. If in doubt, benchmark
your code to see if the cost is acceptable.

• In non-debug modes, it compiles with size optimizations (i.e., -Os). This is generally the mode that
you will want to use for C++/Python bindings. Switching to -O3 would enable further optimizations
like vectorization, loop unrolling, etc., but these all increase compilation time and binary size with no
real benefit for bindings.

If your project contains portions that benefit from -O3-level optimizations, then it’s better to run two
separate compilation steps. An example is shown below:

Compile project code with current optimization mode configured in CMake
add_library(example_lib STATIC source_1.cpp source_2.cpp)
Need position independent code (-fPIC) to link into 'example_ext' below
set_target_properties(example_lib PROPERTIES POSITION_INDEPENDENT_CODE ON)

(continues on next page)

23.1. High-level interface 173

https://docs.python.org/3/c-api/stable.html
https://cibuildwheel.readthedocs.io/en/stable/
https://peps.python.org/pep-0656/
https://docs.python.org/3/c-api/stable.html

nanobind Documentation

(continued from previous page)

Compile extension module with size optimization and add 'example_lib'
nanobind_add_module(example_ext common.h source_1.cpp source_2.cpp)
target_link_libraries(example_ext PRIVATE example_lib)

Size optimizations can be disabled by specifying the optional NOMINSIZE argument, though doing so
is not recommended.

• nanobind_add_module() also disables stack-smashing protections (i.e., it specifies
-fno-stack-protector to Clang/GCC). Protecting against such vulnerabilities in a Python
VM seems futile, and it adds non-negligible extra cost (+8% binary size in benchmarks). This behav-
ior can be disabled by specifying the optional PROTECT_STACK flag. Either way, is not recommended
that you use nanobind in a setting where it presents an attack surface.

• It sets the default symbol visibility to hidden so that only functions and types specifically marked for
export generate symbols in the resulting binary. This substantially reduces the size of the generated
binary.

• In release builds, it strips unreferenced functions and debug information names from the resulting
binary. This can substantially reduce the size of the generated binary and can be disabled using the
optional NOSTRIP argument.

• Link-time optimization (LTO) is not active by default; benefits compared to pybind11 are relatively low,
and this can make linking a build bottleneck. That said, the optional LTO argument can be specified to
enable LTO in release builds.

• nanobind’s CMake build system is often combined with cibuildwheel to automate the generation of
wheels for many different platforms. One such platform called musllinux exists to create tiny self-
contained binaries that are cheap to install in a container environment (Docker, etc.). An issue of the
combination with nanobind is that musllinux doesn’t include the libstdc++ and libgcc libraries
which nanobind depends on. cibuildwheel then has to ship those along in each wheel, which ac-
tually increases their size rather dramatically (by a factor of >5x for small projects). To avoid this,
nanobind prefers to link against these libraries statically when it detects a cibuildwheel build target-
ing musllinux. Pass the MUSL_DYNAMIC_LIBCPP parameter to avoid this behavior.

• If desired (via the optional NB_DOMAIN parameter), nanobind will restrict the visibility of symbols to a
named subdomain to avoid conflicts between bindings. See the associated FAQ entry for details.

23.2 Low-level interface

Instead of nanobind_add_module() nanobind also exposes a more fine-grained interface to the underlying op-
erations. The following

nanobind_add_module(my_ext NB_SHARED LTO my_ext.cpp)

is equivalent to

Build the core parts of nanobind once
nanobind_build_library(nanobind SHARED)

Compile an extension library
add_library(my_ext MODULE my_ext.cpp)

.. and link it against the nanobind parts
target_link_libraries(my_ext PRIVATE nanobind)

.. enable size optimizations
nanobind_opt_size(my_ext)

(continues on next page)

23.2. Low-level interface 174

https://cibuildwheel.readthedocs.io/en/stable/
https://peps.python.org/pep-0656/

nanobind Documentation

(continued from previous page)

.. enable link time optimization
nanobind_lto(my_ext)

.. set the default symbol visibility to 'hidden'
nanobind_set_visibility(my_ext)

.. strip unneeded symbols and debug info from the binary (only active in release␣
↪builds)

nanobind_strip(my_ext)

.. disable the stack protector
nanobind_disable_stack_protector(my_ext)

.. set the Python extension suffix
nanobind_extension(my_ext)

.. set important compilation flags
nanobind_compile_options(my_ext)

.. set important linker flags
nanobind_link_options(my_ext)

Statically link against libstdc++/libgcc when targeting musllinux
nanobind_musl_static_libcpp(my_ext)

The various commands are described below:

nanobind_build_library

Compile the core nanobind library. The function expects only the target name and uses a slightly unusual
parameter passing policy: its behavior changes based on whether or not one the following substrings is
detected in the target name:

-static Perform a static library build (without this suffix, a shared build is used)
-abi3 Perform a stable ABI build targeting Python v3.12+.

Normal shared library build
nanobind_build_library(nanobind)

Static ABI3 build
nanobind_build_library(nanobind-static-abi3)

nanobind_opt_size

This function enable size optimizations in Release, MinSizeRel, RelWithDebInfo builds. It expects a
single target as argument, as in

nanobind_opt_size(my_target)

nanobind_set_visibility

This function sets the default symbol visibility to hidden so that only functions and types specifically marked
for export generate symbols in the resulting binary. It expects a single target as argument, as in

nanobind_trim(my_target)

This substantially reduces the size of the generated binary.

23.2. Low-level interface 175

nanobind Documentation

nanobind_strip

This function strips unused and debug symbols in Release and MinSizeRel builds on Linux and macOS.
It expects a single target as argument, as in

nanobind_strip(my_target)

nanobind_disable_stack_protector

The stack protector affects the binary size of bindings negatively (+8% on Linux in benchmarks). Protecting
from stack smashing in a Python VM seems in any case futile, so this function disables it for the specified
target when performing a build with optimizations. Use it as follows:

nanobind_disable_stack_protector(my_target)

nanobind_extension

This function assigns an extension name to the compiled binding, e.g., .cpython-311-darwin.so. Use it
as follows:

nanobind_extension(my_target)

nanobind_extension_abi3

This function assigns a stable ABI extension name to the compiled binding, e.g., .abi3.so. Use it as
follows:

nanobind_extension_abi3(my_target)

nanobind_compile_options

This function sets recommended compilation flags. Currently, it specifies /bigobj and /MP on MSVC
builds, and it does nothing other platforms or compilers. Use it as follows:

nanobind_compile_options(my_target)

nanobind_link_options

This function sets recommended linker flags. Currently, it controls link time handling of undefined symbols
on Apple platforms related to Python C API calls, and it does nothing other platforms. Use it as follows:

nanobind_link_options(my_target)

nanobind_musl_static_libcpp

This function passes the linker flags -static-libstdc++ and -static-libgcc to gcc when the envi-
ronment variable AUDITWHEEL_PLAT contains the string musllinux, which indicates a cibuildwheel build
targeting that platform.

The function expects a single target as argument, as in

nanobind_musl_static_libcpp(my_target)

23.3 Submodule dependencies

nanobind includes a dependency (a fast hash map named tsl::robin_map) as a Git submodule. If you pre-
fer to use another (e.g., system-provided) version of this dependency, set the NB_USE_SUBMODULE_DEPS vari-
able before importing nanobind into CMake. In this case, nanobind’s CMake scripts will internally invoke
find_dependency(tsl-robin-map) to locate the associated header files.

23.3. Submodule dependencies 176

nanobind Documentation

23.4 Stub generation

Nanobind’s CMake tooling includes a convenience command to interface with the stubgen program explained in
the section on stub generation.

nanobind_add_stub

Import the specified module (MODULE parameter), generate a stub, and write it to the specified file (OUTPUT
parameter). Here is an example use:

nanobind_add_stub(
my_ext_stub
MODULE my_ext
OUTPUT my_ext.pyi
PYTHON_PATH $<TARGET_FILE_DIR:my_ext>
DEPENDS my_ext

)

The target name (my_ext_stub in this example) must be unique but has no other significance.

stubgen will add all paths specified as part of the PYTHON_PATH block and then execute import my_ext
in a Python session. If the extension is not importable, this will cause stub generation to fail.

This command supports the following parameters:

INSTALL_TIMEBy default, stub generation takes place at build time following generation of all dependencies (see
DEPENDS). When this parameter is specified, stub generation is instead postponed to the installa-
tion phase.

MODULESpecifies the name of the module that should be imported. Mandatory.
OUTPUTSpecifies the name of the stub file that should be written. The path is rela-

tive to CMAKE_CURRENT_BINARY_DIR for build-time stub generation and relative to
CMAKE_INSTALL_PREFIX for install-time stub generation. Mandatory.

PYTHON_PATHList of search paths that should be considered when importing the module. The paths
are relative to CMAKE_CURRENT_BINARY_DIR for build-time stub generation and relative to
CMAKE_INSTALL_PREFIX for install-time stub generation. The current directory (".") is always
included and does not need to be specified. The parameter may contain CMake generator expres-
sions when nanobind_add_stub() is used for build-time stub generation. Otherwise, generator
expressions should not be used. Optional.

DEPENDSAny targets listed here will be marked as a dependencies. This should generally be used to list
the target names of one or more prior nanobind_add_module() declarations. Note that this
parameter tracks build-time dependencies and does not need to be specified when stub generation
occurs at install time (see INSTALL_TIME). Optional.

VERBOSEShow status messages generated by stubgen.
EXCLUDE_DOCSTRINGSGenerate a stub containing only typed signatures without docstrings.
INCLUDE_PRIVATEAlso include private members, whose names begin or end with a single underscore.
MARKER_FILETyped extensions normally identify themselves via the presence of an empty file named py.typed

in each module directory. When this parameter is specified, nanobind_add_stub() will auto-
matically generate such an empty file as well.

PATCH_FILESpecify a patch file used to replace declarations in the stub. The syntax is described in the section
on stub generation.

COMPONENTSpecify a component when INSTALL_TIME stub generation is used. This is analogous to
install(..., COMPONENT [name]) in other install targets.

EXCLUDE_FROM_ALLIf specified, the file is only installed as part of a component-specific installation
when INSTALL_TIME stub generation is used. This is analogous to install(...,
EXCLUDE_FROM_ALL) in other install targets.

23.4. Stub generation 177

https://cmake.org/cmake/help/latest/manual/cmake-generator-expressions.7.html
https://cmake.org/cmake/help/latest/manual/cmake-generator-expressions.7.html

INDEX

C
command

nanobind_add_module, 8, 16, 26, 28, 34, 119,
172, 172–174, 177

nanobind_add_stub, 100–102, 177, 177
nanobind_build_library, 175
nanobind_compile_options, 176
nanobind_disable_stack_protector, 176
nanobind_extension, 176
nanobind_extension_abi3, 176
nanobind_link_options, 176
nanobind_musl_static_libcpp, 176
nanobind_opt_size, 175
nanobind_set_visibility, 175
nanobind_strip, 175

N
nanobind::any (C++ class), 133
nanobind::any_contig (C++ class), 165
nanobind::any_type (C++ function), 171
nanobind::arg (C++ struct), 138
nanobind::arg::arg (C++ function), 138
nanobind::arg::noconvert (C++ function), 138
nanobind::arg::none (C++ function), 138
nanobind::arg::operator= (C++ function), 138
nanobind::arg::sig (C++ function), 138
nanobind::args (C++ class), 133
nanobind::attribute_error (C++ function), 136
nanobind::bind_map (C++ function), 159
nanobind::bind_vector (C++ function), 157
nanobind::bool_ (C++ class), 131
nanobind::bool_::bool_ (C++ function), 131
nanobind::bool_::int_ (C++ function), 131
nanobind::bool_::operator bool (C++ func-

tion), 131
nanobind::borrow (C++ function), 125
nanobind::buffer_error (C++ function), 136
nanobind::builtin_exception (C++ class), 135
nanobind::builtins (C++ function), 153
nanobind::bytes (C++ class), 132
nanobind::bytes::bytes (C++ function), 132
nanobind::bytes::c_str (C++ function), 132
nanobind::bytes::size (C++ function), 132
nanobind::c_contig (C++ class), 165
nanobind::call_guard (C++ struct), 139
nanobind::callable (C++ class), 133

nanobind::capsule (C++ class), 130
nanobind::capsule::capsule (C++ function), 130
nanobind::capsule::data (C++ function), 131
nanobind::capsule::name (C++ function), 130
nanobind::cast (C++ function), 137
nanobind::cast_error (C++ class), 135
nanobind::cast_error::cast_error (C++ func-

tion), 135
nanobind::chain_error (C++ function), 136
nanobind::class_ (C++ class), 143
nanobind::class_::class_ (C++ function), 143
nanobind::class_::def (C++ function), 143, 144,

147
nanobind::class_::def_cast (C++ function), 148
nanobind::class_::def_prop_ro (C++ function),

145
nanobind::class_::def_prop_ro_static (C++

function), 147
nanobind::class_::def_prop_rw (C++ function),

145
nanobind::class_::def_prop_rw_static (C++

function), 146
nanobind::class_::def_ro (C++ function), 144
nanobind::class_::def_ro_static (C++ func-

tion), 146
nanobind::class_::def_rw (C++ function), 144
nanobind::class_::def_rw_static (C++ func-

tion), 146
nanobind::class_::def_static (C++ function),

146
nanobind::cpp_function (C++ function), 143
nanobind::dec_ref (C++ function), 170
nanobind::del (C++ function), 126
nanobind::delattr (C++ function), 126
nanobind::deleter (C++ struct), 160
nanobind::deleter::deleter (C++ function), 160
nanobind::deleter::operator() (C++ function),

160
nanobind::deleter::owned_by_cpp (C++ func-

tion), 160
nanobind::deleter::owned_by_python (C++

function), 160
nanobind::detail::accessor (C++ class), 123
nanobind::detail::api (C++ class), 119
nanobind::detail::api::attr (C++ function),

120

178

nanobind Documentation

nanobind::detail::api::begin (C++ function),
120

nanobind::detail::api::dec_ref (C++ func-
tion), 120

nanobind::detail::api::derived (C++ func-
tion), 119

nanobind::detail::api::doc (C++ function), 120
nanobind::detail::api::end (C++ function), 120
nanobind::detail::api::equal (C++ function),

121
nanobind::detail::api::floor_div (C++ func-

tion), 121
nanobind::detail::api::inc_ref (C++ func-

tion), 120
nanobind::detail::api::is (C++ function), 120
nanobind::detail::api::is_none (C++ func-

tion), 121
nanobind::detail::api::is_type (C++ func-

tion), 121
nanobind::detail::api::is_valid (C++ func-

tion), 121
nanobind::detail::api::not_equal (C++ func-

tion), 121
nanobind::detail::api::operator handle

(C++ function), 120
nanobind::detail::api::operator() (C++ func-

tion), 120
nanobind::detail::api::operator* (C++ func-

tion), 120, 121
nanobind::detail::api::operator*= (C++ func-

tion), 122
nanobind::detail::api::operator+ (C++ func-

tion), 121
nanobind::detail::api::operator+= (C++ func-

tion), 122
nanobind::detail::api::operator/ (C++ func-

tion), 121
nanobind::detail::api::operator/= (C++ func-

tion), 122
nanobind::detail::api::operator& (C++ func-

tion), 122
nanobind::detail::api::operator&= (C++ func-

tion), 122
nanobind::detail::api::operator- (C++ func-

tion), 121
nanobind::detail::api::operator-= (C++ func-

tion), 122
nanobind::detail::api::operator^ (C++ func-

tion), 122
nanobind::detail::api::operator^= (C++ func-

tion), 122
nanobind::detail::api::operator~ (C++ func-

tion), 121
nanobind::detail::api::operator| (C++ func-

tion), 122
nanobind::detail::api::operator|= (C++ func-

tion), 122
nanobind::detail::api::operator> (C++ func-

tion), 121
nanobind::detail::api::operator>= (C++ func-

tion), 121
nanobind::detail::api::operator>> (C++ func-

tion), 122
nanobind::detail::api::operator>>= (C++

function), 122
nanobind::detail::api::operator< (C++ func-

tion), 121
nanobind::detail::api::operator<= (C++ func-

tion), 121
nanobind::detail::api::operator<< (C++ func-

tion), 122
nanobind::detail::api::operator<<= (C++

function), 122
nanobind::detail::api::operator[] (C++ func-

tion), 120
nanobind::detail::api::type (C++ function),

120
nanobind::detail::self_t (C++ class), 155
nanobind::device (C++ class), 165
nanobind::device::cpu (C++ class), 165
nanobind::device::cuda (C++ class), 165
nanobind::device::cuda_host (C++ class), 165
nanobind::device::cuda_managed (C++ class),

165
nanobind::device::metal (C++ class), 165
nanobind::device::oneapi (C++ class), 165
nanobind::device::rocm (C++ class), 165
nanobind::device::rocm_host (C++ class), 165
nanobind::device::vulkan (C++ class), 165
nanobind::dict (C++ class), 128
nanobind::dict::begin (C++ function), 129
nanobind::dict::clear (C++ function), 129
nanobind::dict::contains (C++ function), 129
nanobind::dict::dict (C++ function), 129
nanobind::dict::end (C++ function), 129
nanobind::dict::items (C++ function), 129
nanobind::dict::keys (C++ function), 129
nanobind::dict::size (C++ function), 129
nanobind::dict::update (C++ function), 129
nanobind::dict::values (C++ function), 129
nanobind::dlpack::dtype (C++ struct), 164
nanobind::dlpack::dtype::bits (C++ member),

164
nanobind::dlpack::dtype::code (C++ member),

164
nanobind::dlpack::dtype::lanes (C++ mem-

ber), 164
nanobind::dlpack::dtype_code (C++ enum), 163
nanobind::dlpack::dtype_code::Bfloat (C++

enumerator), 163
nanobind::dlpack::dtype_code::Complex (C++

enumerator), 164
nanobind::dlpack::dtype_code::Float (C++

enumerator), 163
nanobind::dlpack::dtype_code::Int (C++ enu-

merator), 163

Index 179

nanobind Documentation

nanobind::dlpack::dtype_code::UInt (C++
enumerator), 163

nanobind::DMap (C++ type), 166
nanobind::DRef (C++ type), 166
nanobind::DStride (C++ type), 166
nanobind::dtype (C++ function), 164
nanobind::dynamic_attr (C++ struct), 142
nanobind::ellipsis (C++ class), 133
nanobind::ellipsis::ellipsis (C++ function),

133
nanobind::enum_ (C++ class), 148
nanobind::enum_::enum_ (C++ function), 148
nanobind::enum_::export_values (C++ func-

tion), 148
nanobind::enum_::value (C++ function), 148
nanobind::error_scope (C++ struct), 134
nanobind::error_scope::~error_scope (C++

function), 134
nanobind::error_scope::error_scope (C++

function), 134
nanobind::eval (C++ function), 168
nanobind::eval_mode (C++ enum), 168
nanobind::eval_mode::eval_expr (C++ enumer-

ator), 168
nanobind::eval_mode::eval_single_statement

(C++ enumerator), 168
nanobind::eval_mode::eval_statements (C++

enumerator), 168
nanobind::exception (C++ class), 148
nanobind::exception::exception (C++ func-

tion), 148
nanobind::exec (C++ function), 168
nanobind::f_contig (C++ class), 165
nanobind::find (C++ function), 137
nanobind::float_ (C++ class), 131
nanobind::float_::float_ (C++ function), 131
nanobind::float_::operator double (C++ func-

tion), 131
nanobind::for_getter (C++ struct), 141
nanobind::for_setter (C++ struct), 141
nanobind::getattr (C++ function), 126
nanobind::gil_scoped_acquire (C++ struct), 150
nanobind::gil_scoped_acquire::~gil_scoped_acquire

(C++ function), 150
nanobind::gil_scoped_acquire::gil_scoped_acquire

(C++ function), 150
nanobind::gil_scoped_release (C++ struct), 150
nanobind::gil_scoped_release::~gil_scoped_release

(C++ function), 150
nanobind::gil_scoped_release::gil_scoped_release

(C++ function), 150
nanobind::globals (C++ function), 153
nanobind::handle (C++ class), 123
nanobind::handle::dec_ref (C++ function), 123
nanobind::handle::handle (C++ function), 123
nanobind::handle::inc_ref (C++ function), 123
nanobind::handle::operator bool (C++ func-

tion), 123

nanobind::handle::operator= (C++ function),
123

nanobind::handle::ptr (C++ function), 123
nanobind::handle_t (C++ class), 134
nanobind::hasattr (C++ function), 125
nanobind::implicitly_convertible (C++ func-

tion), 153
nanobind::import_error (C++ function), 136
nanobind::inc_ref (C++ function), 170
nanobind::index_error (C++ function), 135
nanobind::init (C++ struct), 148
nanobind::init_implicit (C++ struct), 149
nanobind::inst_alloc (C++ function), 151
nanobind::inst_alloc_zero (C++ function), 151
nanobind::inst_check (C++ function), 151
nanobind::inst_copy (C++ function), 152
nanobind::inst_destruct (C++ function), 152
nanobind::inst_mark_ready (C++ function), 152
nanobind::inst_move (C++ function), 152
nanobind::inst_name (C++ function), 152
nanobind::inst_ptr (C++ function), 151
nanobind::inst_ready (C++ function), 152
nanobind::inst_reference (C++ function), 151
nanobind::inst_replace_copy (C++ function),

152
nanobind::inst_replace_move (C++ function),

152
nanobind::inst_set_state (C++ function), 152
nanobind::inst_state (C++ function), 152
nanobind::inst_take_ownership (C++ function),

151
nanobind::inst_zero (C++ function), 152
nanobind::int_ (C++ class), 131
nanobind::int_::int_ (C++ function), 131
nanobind::int_::operator T (C++ function), 131
nanobind::intrusive_base (C++ class), 169
nanobind::intrusive_base::dec_ref (C++ func-

tion), 169
nanobind::intrusive_base::inc_ref (C++ func-

tion), 169
nanobind::intrusive_base::self_py (C++ func-

tion), 169
nanobind::intrusive_base::set_self_py (C++

function), 169
nanobind::intrusive_counter (C++ class), 168
nanobind::intrusive_counter::dec_ref (C++

function), 169
nanobind::intrusive_counter::inc_ref (C++

function), 169
nanobind::intrusive_counter::intrusive_counter

(C++ function), 168
nanobind::intrusive_counter::operator=

(C++ function), 169
nanobind::intrusive_counter::self_py (C++

function), 169
nanobind::intrusive_counter::set_self_py

(C++ function), 169
nanobind::intrusive_init (C++ function), 169

Index 180

nanobind Documentation

nanobind::intrusive_ptr (C++ struct), 142
nanobind::intrusive_ptr::intrusive_ptr

(C++ function), 142
nanobind::is_alive (C++ function), 153
nanobind::is_arithmetic (C++ struct), 143
nanobind::is_final (C++ struct), 142
nanobind::is_generic (C++ struct), 142
nanobind::is_implicit (C++ struct), 139
nanobind::is_method (C++ struct), 138
nanobind::is_operator (C++ struct), 139
nanobind::is_weak_referenceable (C++ struct),

142
nanobind::isinstance (C++ function), 127
nanobind::iter (C++ function), 153
nanobind::iterable (C++ class), 133
nanobind::iterator (C++ class), 132
nanobind::iterator::operator!= (C++ func-

tion), 132
nanobind::iterator::operator* (C++ function),

132
nanobind::iterator::operator++ (C++ func-

tion), 132
nanobind::iterator::operator== (C++ func-

tion), 132
nanobind::iterator::operator-> (C++ func-

tion), 132
nanobind::jax (C++ class), 166
nanobind::keep_alive (C++ struct), 139
nanobind::key_error (C++ function), 136
nanobind::kw_only (C++ struct), 141
nanobind::kwargs (C++ class), 133
nanobind::len (C++ function), 126, 127
nanobind::len_hint (C++ function), 127
nanobind::list (C++ class), 128
nanobind::list::append (C++ function), 128
nanobind::list::begin (C++ function), 128
nanobind::list::clear (C++ function), 128
nanobind::list::end (C++ function), 128
nanobind::list::extend (C++ function), 128
nanobind::list::insert (C++ function), 128
nanobind::list::list (C++ function), 128
nanobind::list::operator[] (C++ function), 128
nanobind::list::reverse (C++ function), 128
nanobind::list::size (C++ function), 128
nanobind::list::sort (C++ function), 128
nanobind::make_iterator (C++ function), 160
nanobind::make_key_iterator (C++ function),

161
nanobind::make_tuple (C++ function), 137
nanobind::make_value_iterator (C++ function),

161
nanobind::mapping (C++ class), 132
nanobind::mapping::contains (C++ function),

132
nanobind::mapping::items (C++ function), 132
nanobind::mapping::keys (C++ function), 132
nanobind::mapping::values (C++ function), 132
nanobind::module_ (C++ class), 130

nanobind::module_::def (C++ function), 130
nanobind::module_::def_submodule (C++ func-

tion), 130
nanobind::module_::import_ (C++ function), 130
nanobind::name (C++ struct), 138
nanobind::name::name (C++ function), 138
nanobind::ndarray (C++ class), 161
nanobind::ndarray::~ndarray (C++ function),

161
nanobind::ndarray::data (C++ function), 163
nanobind::ndarray::device_id (C++ function),

163
nanobind::ndarray::device_type (C++ func-

tion), 163
nanobind::ndarray::dtype (C++ function), 162
nanobind::ndarray::is_valid (C++ function),

163
nanobind::ndarray::itemsize (C++ function),

162
nanobind::ndarray::nbytes (C++ function), 162
nanobind::ndarray::ndarray (C++ function), 161,

162
nanobind::ndarray::ndim (C++ function), 162
nanobind::ndarray::operator() (C++ function),

163
nanobind::ndarray::operator= (C++ function),

162
nanobind::ndarray::shape (C++ function), 162
nanobind::ndarray::shape_ptr (C++ function),

162
nanobind::ndarray::size (C++ function), 162
nanobind::ndarray::stride (C++ function), 162
nanobind::ndarray::stride_ptr (C++ function),

163
nanobind::ndarray::view (C++ function), 163
nanobind::ndarray_check (C++ function), 161
nanobind::ndim (C++ class), 165
nanobind::new_ (C++ struct), 149
nanobind::next_overload (C++ class), 135
nanobind::next_overload::next_overload

(C++ function), 135
nanobind::none (C++ function), 153
nanobind::not_implemented (C++ class), 133
nanobind::not_implemented::not_implemented

(C++ function), 133
nanobind::numpy (C++ class), 166
nanobind::object (C++ class), 124
nanobind::object::~object (C++ function), 124
nanobind::object::object (C++ function), 124
nanobind::object::operator*= (C++ function),

124
nanobind::object::operator+= (C++ function),

124
nanobind::object::operator/= (C++ function),

124
nanobind::object::operator= (C++ function),

124
nanobind::object::operator&= (C++ function),

Index 181

nanobind Documentation

124
nanobind::object::operator-= (C++ function),

124
nanobind::object::operator^= (C++ function),

125
nanobind::object::operator|= (C++ function),

124
nanobind::object::operator>>= (C++ function),

125
nanobind::object::operator<<= (C++ function),

125
nanobind::object::release (C++ function), 124
nanobind::object::reset (C++ function), 124
nanobind::print (C++ function), 153
nanobind::python_error (C++ struct), 134
nanobind::python_error::discard_as_unraisable

(C++ function), 135
nanobind::python_error::matches (C++ func-

tion), 134
nanobind::python_error::python_error (C++

function), 134
nanobind::python_error::restore (C++ func-

tion), 135
nanobind::python_error::traceback (C++ func-

tion), 135
nanobind::python_error::type (C++ function),

135
nanobind::python_error::value (C++ function),

135
nanobind::python_error::what (C++ function),

134
nanobind::pytorch (C++ class), 166
nanobind::raise (C++ function), 136
nanobind::raise_from (C++ function), 136
nanobind::raise_python_error (C++ function),

137
nanobind::raise_type_error (C++ function), 137
nanobind::ref (C++ class), 170
nanobind::ref::~ref (C++ function), 170
nanobind::ref::get (C++ function), 171
nanobind::ref::operator!= (C++ function), 170,

171
nanobind::ref::operator* (C++ function), 171
nanobind::ref::operator= (C++ function), 170
nanobind::ref::operator== (C++ function), 170,

171
nanobind::ref::operator-> (C++ function), 171
nanobind::ref::ref (C++ function), 170
nanobind::ref::reset (C++ function), 170
nanobind::register_exception_translator

(C++ function), 136
nanobind::repr (C++ function), 153
nanobind::ro (C++ class), 164
nanobind::rv_policy (C++ enum), 140
nanobind::rv_policy::automatic (C++ enumer-

ator), 141
nanobind::rv_policy::automatic_reference

(C++ enumerator), 141

nanobind::rv_policy::copy (C++ enumerator),
140

nanobind::rv_policy::move (C++ enumerator),
140

nanobind::rv_policy::none (C++ enumerator),
141

nanobind::rv_policy::reference (C++ enumer-
ator), 140

nanobind::rv_policy::reference_internal
(C++ enumerator), 140

nanobind::rv_policy::take_ownership (C++
enumerator), 140

nanobind::scope (C++ struct), 138
nanobind::scope::scope (C++ function), 138
nanobind::self (C++ member), 156
nanobind::sequence (C++ class), 132
nanobind::set (C++ class), 129
nanobind::set::add (C++ function), 129
nanobind::set::clear (C++ function), 129
nanobind::set::contains (C++ function), 129
nanobind::set::discard (C++ function), 129
nanobind::set::set (C++ function), 129
nanobind::set::size (C++ function), 129
nanobind::set_implicit_cast_warnings (C++

function), 153
nanobind::set_leak_warnings (C++ function),

153
nanobind::setattr (C++ function), 126
nanobind::shape (C++ class), 165
nanobind::sig (C++ struct), 139
nanobind::sig::sig (C++ function), 139
nanobind::slice (C++ class), 133
nanobind::slice::compute (C++ function), 133
nanobind::slice::slice (C++ function), 133
nanobind::steal (C++ function), 125
nanobind::stop_iteration (C++ function), 135
nanobind::str (C++ class), 131
nanobind::str::c_str (C++ function), 131
nanobind::str::format (C++ function), 131
nanobind::str::str (C++ function), 131
nanobind::supplement (C++ struct), 142
nanobind::tensorflow (C++ class), 166
nanobind::try_cast (C++ function), 137
nanobind::tuple (C++ class), 127
nanobind::tuple::begin (C++ function), 127
nanobind::tuple::end (C++ function), 127
nanobind::tuple::operator[] (C++ function),

127
nanobind::tuple::size (C++ function), 127
nanobind::tuple::tuple (C++ function), 127
nanobind::type (C++ function), 127
nanobind::type_align (C++ function), 150
nanobind::type_check (C++ function), 150
nanobind::type_error (C++ function), 136
nanobind::type_get_slot (C++ function), 151
nanobind::type_info (C++ function), 150
nanobind::type_name (C++ function), 151
nanobind::type_object (C++ class), 132

Index 182

nanobind Documentation

nanobind::type_object_t (C++ class), 134
nanobind::type_size (C++ function), 150
nanobind::type_slots (C++ struct), 142
nanobind::type_slots::type_slots (C++ func-

tion), 142
nanobind::type_supplement (C++ function), 151
nanobind::type_var (C++ function), 171
nanobind::type_var_tuple (C++ function), 171
nanobind::typed (C++ class), 154
nanobind::value_error (C++ function), 136
nanobind::weakref (C++ class), 133
nanobind::weakref::weakref (C++ function), 133
nanobind_add_module

command, 8, 16, 26, 28, 34, 119, 172, 172–174, 177
nanobind_add_stub

command, 100–102, 177, 177
nanobind_build_library

command, 175
nanobind_compile_options

command, 176
nanobind_disable_stack_protector

command, 176
nanobind_extension

command, 176
nanobind_extension_abi3

command, 176
nanobind_link_options

command, 176
nanobind_musl_static_libcpp

command, 176
nanobind_opt_size

command, 175
nanobind_set_visibility

command, 175
nanobind_strip

command, 175
NB_MAKE_OPAQUE (C macro), 119
NB_MODULE (C macro), 119
NB_OVERRIDE (C macro), 156
NB_OVERRIDE_NAME (C macro), 156
NB_OVERRIDE_PURE (C macro), 156
NB_OVERRIDE_PURE_NAME (C macro), 156
NB_TRAMPOLINE (C macro), 156

Index 183

	Changelog
	Version 2.0.0 (TBA)
	Version 1.9.2 (Feb 23, 2024)
	Version 1.9.0-1.9.1 (Feb 18, 2024)
	Version 1.8.0 (Nov 2, 2023)
	Version 1.7.0 (Oct 19, 2023)
	New features
	Bugfixes

	Version 1.6.2 (Oct 3, 2023)
	Version 1.6.1 (Oct 2, 2023)
	Version 1.6.0 (Oct 2, 2023)
	New features
	Bugfixes

	Version 1.5.2 (Aug 24, 2023)
	Version 1.5.1 (Aug 23, 2023)
	Version 1.5.0 (Aug 7, 2023)
	Version 1.4.0 (June 8, 2023)
	Version 1.3.2 (June 2, 2023)
	Version 1.3.1 (May 31, 2023)
	Version 1.3.0 (May 31, 2023)
	New features
	Efficiency improvements:
	Miscellaneous fixes and improvements

	Version 1.2.0 (April 24, 2023)
	Version 1.1.1 (April 6, 2023)
	Version 1.1.0 (April 5, 2023)
	Version 1.0.0 (March 28, 2023)
	Version 0.3.1 (March 8, 2023)
	Version 0.3.0 (March 8, 2023)
	Version 0.2.0 (March 3, 2023)
	Version 0.1.0 (January 3, 2023)
	Version 0.0.9 (Nov 23, 2022)
	Version 0.0.8 (Oct 27, 2022)
	Version 0.0.7 (Oct 14, 2022)
	Version 0.0.6 (Oct 14, 2022)
	Version 0.0.5 (May 13, 2022)
	Version 0.0.4 (May 13, 2022)
	Version 0.0.3 (Apr 14, 2022)
	Version 0.0.2 (Mar 10, 2022)
	Version 0.0.1 (Feb 21, 2022)

	Why another binding library?
	So what is different?
	Performance improvements
	Major additions
	Minor additions

	Benchmarks
	Compilation time
	Binary size
	Performance
	Discussion
	Details

	Porting guide
	Namespace
	Name changes
	None/null arguments
	Shared pointers and holders
	Custom constructors
	Implicit conversions
	Trampoline classes
	Iterator bindings
	Type casters
	Removed features

	Frequently asked questions
	Importing my module fails with an ImportError
	Importing fails due to missing [lib]nanobind.{dylib,so,dll}
	Why are reference arguments not updated?
	Why am I getting errors about leaked functions and types?
	Compilation fails with a static assertion mentioning NB_MAKE_OPAQUE()
	How can I preserve the const-ness of values in bindings?
	How can I reduce build time?
	How can I avoid conflicts with other projects using nanobind?
	I’d like to use this project, but with $BUILD_SYSTEM instead of CMake
	How to cite this project?

	Installing the library
	Install via Pip (recommended)
	Install via Conda
	Install as a Git submodule

	Setting up a build system
	Preliminaries
	Finding nanobind
	Building an extension

	Creating your first extension
	Building using CMake
	Binding functions
	Keyword and default arguments
	Exporting values
	Docstrings
	Binding a custom type
	Binding lambda functions
	Higher order functions
	Wrap-up

	Exchanging information
	Option 1: Type Casters
	Mutable reference issue

	Option 2: Bindings
	Option 3: Wrappers
	Discussion

	Object ownership
	A problematic example
	Return value policies
	Unique pointers
	Shared ownership
	Shared pointers
	Intrusive reference counting

	Functions
	Binding annotations
	Default arguments revisited
	Implicit conversions, and how to suppress them
	None arguments
	Overload resolution order
	Accepting *args and **kwargs
	Expanding *args and **kwargs
	Keyword-only parameters
	Function templates
	Lifetime annotations
	Call guards
	Higher-order functions

	Classes
	Frequently used
	Subclasses
	Automatic downcasting
	Overloaded methods
	Enumerations and internal types
	Dynamic attributes
	Weak references
	Extending C++ classes in Python
	Overriding virtual functions in Python
	Operator overloading
	Binding protected member functions
	Binding classes with template parameters
	Tag-based polymorphism
	Binding unions
	Pickling
	Customizing Python object creation

	Exceptions
	Automatic conversion of C++ exceptions
	Handling custom exceptions
	Capturing Python exceptions within C++
	Handling errors from the Python C API
	Chaining exceptions (‘raise from’)
	Handling unraisable exceptions

	N-dimensional arrays
	The nb::ndarray<..> class
	Binding functions that take arrays as input
	Array constraints
	Constraint types
	Passing arrays in C++ code
	Fast array views
	Specializing views at runtime
	Constraints in type signatures
	Arrays and function overloads
	Binding functions that return arrays
	Data ownership
	Return value policies
	Nonstandard arithmetic types
	Frequently asked questions
	Why does nanobind not accept my NumPy array?
	Limitations related to dtypes

	The Eigen linear algebra library
	Dense matrices and vectors
	C++ Python
	Python C++

	Sparse matrices

	Packaging
	Step 1: Overview
	Step 2: Specify build dependencies and metadata
	Step 3: Set up a CMake build system
	Step 4: Install the package locally
	Step 5: Incremental rebuilds
	Step 6: Build wheels in the cloud

	Typing
	Signature customization
	Functions
	Classes

	Generic types
	Parameterizing generic types
	Creating generic types
	Any-typed return values

	Stub generation
	CMake interface
	Command line interface
	Python interface

	Pattern files

	Utilities
	Evaluating Python expressions from strings

	Object ownership, continued
	Intrusive reference counting
	Motivation
	The solution

	Shared pointers, continued
	enable_shared_from_this

	Unique pointers

	Low-level interface
	Even lower-level interface
	Referencing existing instances
	Supplemental type data

	Customizing type creation
	Cyclic garbage collection
	Reference cycles involving functions

	C++ API Reference (Core)
	Macros
	Python object API
	Handles and objects
	Without reference counting
	With reference counting

	Attribute access
	Size queries
	Type queries
	Wrapper classes
	Parameterized wrapper classes
	Error management
	Casting
	Common binding annotations
	Function binding annotations
	Class binding annotations
	Enum binding annotations
	Function binding
	Class binding
	GIL Management
	Low-level type and instance access
	Type objects
	Instances

	Global flags
	Miscellaneous

	C++ API Reference (Extras)
	Operator overloading
	Trampolines
	STL vector bindings
	STL map bindings
	Unique pointer deleter
	Iterator bindings
	N-dimensional array type
	Data types
	Array annotations
	Data type
	Shape
	Contiguity
	Device type
	Framework

	Eigen convenience type aliases
	Timestamp and duration conversions
	An overview of clocks in C++11
	Provided conversions

	Evaluating Python expressions from strings
	Intrusive reference counting helpers
	Typing

	CMake API Reference
	High-level interface
	Low-level interface
	Submodule dependencies
	Stub generation

	Index

